K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 6 2023

Đề đọc khó hiểu. Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

2 tháng 6 2021

\(M=3\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}+4\right)^2+14\)

\(=3\left(x+2\sqrt{x}+1\right)-\left(x+8\sqrt{x}+16\right)+14\)

\(=3x+6\sqrt{x}+3-x-8\sqrt{x}-16+14\)

\(=2x-2\sqrt{x}+1\)

\(=2\left(x-4\sqrt{x}+4\right)+6\sqrt{x}-7\)

\(=2\left(\sqrt{x}-2\right)^2+6\sqrt{x}-7\ge2.0+6.\sqrt{4}-7=5\)

Dấu "=" \(x=4\)

Vậy GTNN của M là 4 <=> x = 4

4 tháng 6 2021

\(\left\{{}\begin{matrix}xz=x+4\left(1\right)\\2y^2=7xz-3x-14\\x^2+y^2=35-z^2\left(3\right)\end{matrix}\right.\left(2\right)\)

Nhận thấy \(x=0\) không là nghiệm của (1) . 

\(\rightarrow z=\dfrac{x+4}{x}\)(4)

Thế (1) vào (2) . 

\(2y^2=7\left(x+4\right)-3x-14=4x+14\leftrightarrow y^2=2x+7\)(\(x\ge-\dfrac{7}{2}\)) (5)

Thế (4)(5) vào (3) 

\(x^2+2x+7=35-\left(\dfrac{x+4}{x}\right)^2\)

\(\Leftrightarrow x^4+2x^3-27x^2+8x+16=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x^2+7x+4\right)=0\)\(\)

TH1 : \(x-4=0\Leftrightarrow x=4\Leftrightarrow\left\{{}\begin{matrix}y=\pm\sqrt{15}\\z=2\end{matrix}\right.\)

TH2 : \(x-1=0\Leftrightarrow x=1\Leftrightarrow\left\{{}\begin{matrix}y=\pm3\\z=5\end{matrix}\right.\)

TH3 : \(x^2+7x+4=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-7+\sqrt{33}}{2}\left(TM\right)\\x=\dfrac{-7-\sqrt{33}}{2}\left(KTM\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{-7+\sqrt{33}}{2}\Leftrightarrow\left\{{}\begin{matrix}y=\pm\sqrt[4]{33}\\z=-\dfrac{5+\sqrt{33}}{2}\end{matrix}\right.\)

NV
8 tháng 1 2023

\(2x^2+3y^2+4z^2=21\Rightarrow2x^2\le21-3.1^2-4.1^2=14\)

\(\Rightarrow x\le\sqrt{7}\)

Tương tự ta có \(y\le\sqrt{5}\) và \(z\le2\)

Do đó:

\(\left(z-1\right)\left(z-2\right)\le0\Rightarrow z^2+2\le3z\Rightarrow4z^2+8\le12z\) (1)

\(\left(x-1\right)\left(2x-10\right)\le0\Rightarrow2x^2+10\le12x\) (2)

\(\left(y-1\right)\left(3y-9\right)\le0\Leftrightarrow3y^2+9\le12y\) (3)

Cộng vế (1);(2) và (3):

\(\Rightarrow12\left(x+y+z\right)\ge2x^2+3y^2+4z^2+27\ge48\)

\(\Rightarrow x+y+z\ge4\)

\(M_{min}=4\) khi \(\left(x;y;z\right)=\left(1;1;2\right)\)

NV
8 tháng 1 2023

Theo chứng minh ban đầu ta có: \(z\le2\Rightarrow z-2\le0\)

Theo giả thiết \(z\ge1\Rightarrow z-1\ge0\)

\(\Rightarrow\left(z-1\right)\left(z-2\right)\le0\)

Tương tự: \(x< \sqrt{5}< 5\Rightarrow x-5< 0\Rightarrow2x-10< 0\)

\(\Rightarrow\left(x-1\right)\left(2x-10\right)\le0\)

y cũng như vậy

 

AH
Akai Haruma
Giáo viên
30 tháng 10 2021

Lời giải:

$y=\frac{x^2+3}{x^2-x+2}$
$\Leftrightarrow y(x^2-x+2)=x^2+3$

$\Leftrightarrow x^2(y-1)-xy+(2y-3)=0(*)$

Coi đây là pt bậc 2 ẩn $x$. Vì $y$ tồn tại nên $(*)$ luôn có nghiệm

$\Rightarrow \Delta=y^2-4(y-1)(2y-3)\geq 0$

$\Leftrightarrow -7y^2+20y-12\geq 0$

$\Leftrightarrow (7y-6)(2-y)\geq 0$

$\Leftrightarrow \frac{6}{7}\leq y\leq 2$

Vậy $y_{\min}=\frac{6}{7}; y_{\max}=2$

4 tháng 6 2021

có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)

có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)

từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)

=>Min A=(1+\(\sqrt{2}\))^2

 

 

4 tháng 6 2021

cảm ơn rất nhiều

 

30 tháng 4 2020

Từ giả thiếu suy ra: (x2+y2)2-4(x2+y2)+3=-x2 =<0

Do đó: A2-4A+3 =<0

<=> (A-1)(A-3) =<0 

<=> 1 =<A=<3

Vậy MinA=1 <=> x=0; y=\(\pm\)1

       MaxA=3 <=> x=0; y=\(\pm\sqrt{3}\)