
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1/ \(A=3\left|2x-1\right|-5\)
Ta có: \(\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|-5\ge-5\)
Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất
Vậy \(Min_A=-5\)

- Vì \(\left|x-\frac{1}{2}\right|\ge0\)
=>\(A=\frac{3}{8}+\left|x-\frac{1}{2}\right|\ge\frac{3}{8}\)
A đạt giá trị nhỏ nhất <=> \(A=\frac{3}{8}+\left|x-\frac{1}{2}\right|=\frac{3}{8}\)
=>\(\left|x-\frac{1}{2}\right|=0\)
=>\(x-\frac{1}{2}=0\)
=>x=\(\frac{1}{2}\)
Vậy A đạt giá trị nhỏ nhất là \(\frac{3}{8}\) khi x=\(\frac{1}{2}\)
- Vì \(\left|2x+4\right|\ge0\)
=>\(B=\frac{6}{5}-\left|2x+4\right|\le\frac{6}{5}\)
B đạt giá trị lớn nhất <=> \(B=\frac{6}{5}-\left|2x+4\right|=\frac{6}{5}\)
<=>|2x+4|=0
<=>2x+4=0
<=>2x=-4
<=>x=-2
Vậy B đạt giá trị lớn nhất là \(\frac{6}{5}\) khi x=-2

a) \(\left|2y-3\right|-\frac{1}{7}=\frac{3}{4}\)
=> \(\left|2y-3\right|=\frac{3}{4}+\frac{1}{7}\)
=> \(\left|2y-3\right|=\frac{25}{28}\)
=> \(\orbr{\begin{cases}2y-3=\frac{25}{28}\\2y-3=-\frac{25}{28}\end{cases}}\)
=> \(\orbr{\begin{cases}2y=\frac{109}{28}\\2y=\frac{59}{28}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{109}{56}\\x=\frac{59}{56}\end{cases}}\)
Tính GTLN
a) Ta có: -|2x - 5| \(\le\)0 \(\forall\)x
=> -|2x - 5| + 32 \(\le\)32 \(\forall\)x
Hay A \(\le\)32 \(\forall\)x
Dấu "=" xảy ra khi : 2x - 5 = 0 <=> 2x = 5 <=> x = 5/2
Vậy Max của A = 32 tại x = 5/2
\(C=\left|y^2+1\right|+2020\)
Ta có: \(y^2\ge0\Leftrightarrow y^2+1\ge1\Leftrightarrow\left|y^2+1\right|\ge1\)
\(\Leftrightarrow C=\left|y^2+1\right|+2020\ge2021\)
Vậy \(C_{min}=2021\)
(Dấu "="\(\Leftrightarrow y^2+1=1\Leftrightarrow y^2=0\Leftrightarrow y=0\))


2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
\(Taco:\)
\(|1-2x|\ge0\)
\(\Rightarrow A_{min}\Leftrightarrow|1-2x|=0\Leftrightarrow x=0,5\)
\(\Rightarrow A_{min}=3.0-5=-5\)
Vậy GTNN của A=-5
Có \(3\left|1-2x\right|\ge0\)
\(\Rightarrow A\ge0+\left(-5\right)=-5\)
Vậy MinA=-5<=>x=1/2