K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2016

nhân cái đầu với cái cuối, hai cái giữa nhân vào nhau rồi đặt ẩn là ra

4 tháng 1 2017

GTNN=-36 tại x=0

27 tháng 3 2017

-36 bạn nha

CHÚC BẠN HỌC GIỎI

13 tháng 11 2021

\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)

13 tháng 11 2021

a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

Dấu "=" \(\Leftrightarrow x=-1\)

b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)

c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)

Dấu "=" \(\Leftrightarrow x=2\)

23 tháng 6 2021

a)

\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Daaus = xayr ra khi: x = 2

b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)

Dấu = xảy ra khi x = 3

c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra khi

2x = y và y = 2

=> x = 1 và y = 2

23 tháng 6 2021

a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)

Dấu "=" <=> x = 2

b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)

Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)

c) \(4x^2+2y^2-4xy-4y+1\)

\(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)

\(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

15 tháng 6 2015

1) tìm giá trị nhỏ nhất của M = x(x-4) + 13

M=x(x-4)+13=x2-4x+13

=x2-4x+4+9

=(x-2)2+9\(\ge\)9(vì (x-2)2\(\ge\)0)

Dấu "=" xảy ra khi x-2 =0

                         <=>x=2

Vậy giá trị nhỏ nhất của M là 9 tại x=2

2) tìm giá trị lớn nhất của P = x(10-x) +6

 P = x(10-x) +6=10x-x2+6=-x2+10x-25+31

                                    =-(x2-10x+25)+31

                                    =-(x-5)2+31\(\le\)31(vì -(x-5)2\(\le\)0)

Dấu = xảy ra khi x-5=0

                      <=>x=5

vậy giá trị lớn nhất của P là 31 tại x=5

6 tháng 7 2016

a. x2 + x + 1

= x2 + 2.x.1/2 + 1/4 + 3/4

= (x + 1/2)2 + 3/4

Mà (x + 1.2)2 \(\ge\)0

=> (x + 1/2)2 + 3/4 \(\ge\)3/4

Vậy GTNN của đa thức là 3/4 <=> x + 1/2 = 0 <=> x = -1/2

b. (x - 1)(x + 2)(x + 3)(x + 6)

= (x - 1)(x + 6)(x + 2)(x + 3)

= (x2 + 6x - x - 6)(x2 + 3x + 2x + 6)

= (x2 + 5x - 6)(x2 + 5x + 6)

= (x2 + 5x)2 - 62

= (x2 + 5x)2 - 36

Mà (x2 + 5x)\(\ge\)0

=> (x2 + 5x)2 - 36 \(\ge\)-36

Vậy đa thức có GTNN là -36 <=> x2 + 5x = 0 <=> x.(x + 5) = 0 <=> x = 0 hoặc x + 5 = 0 <=> x = 0 hoặc x = -5.

17 tháng 9 2016

a. x2 + x + 1

= x2 + 2.x.1/2 + 1/4 + 3/4

= (x + 1/2)2 + 3/4

Mà (x + 1.2)2 0

=> (x + 1/2)2 + 3/4 3/4

Vậy GTNN của đa thức là 3/4 <=> x + 1/2 = 0 <=> x = -1/2

b. (x - 1)(x + 2)(x + 3)(x + 6)

= (x - 1)(x + 6)(x + 2)(x + 3)

= (x2 + 6x - x - 6)(x2 + 3x + 2x + 6)

= (x2 + 5x - 6)(x2 + 5x + 6)

= (x2 + 5x)2 - 62

= (x2 + 5x)2 - 36

Mà (x2 + 5x)0

=> (x2 + 5x)2 - 36 -36

Vậy đa thức có GTNN là -36 <=> x2 + 5x = 0 <=> x.(x + 5) = 0 <=> x = 0 hoặc x + 5 = 0 <=> x = 0 hoặc x = -5.

24 tháng 6 2018

1) \(A=\frac{2x+1}{x^2+2}\)

\(=\frac{\frac{1}{2}\left(x^2+4x+4\right)-\frac{1}{2}\left(x^2+2\right)}{x^2+2}\)

\(=\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}-\frac{1}{2}\ge-\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy GTNN của \(A=-\frac{1}{2}\)khi x = -2 

25 tháng 7 2018

Ai giúp mik vs

25 tháng 7 2018

Huhu ai giúp vs