K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
14 tháng 7 2021

\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-2020\right|\)

\(=\left(\left|x-1\right|+\left|2020-x\right|\right)+\left(\left|x-2\right|+\left|2019-x\right|\right)+...+\left(\left|x-1010\right|+\left|1011-x\right|\right)\)

\(\ge\left|x-1+2020-x\right|+\left|x-2+2019-x\right|+...+\left|x-1010+1011-x\right|\)

\(=2019+2017+...+1\)

\(=\frac{\left(2019+1\right).\left[\left(2019-1\right)\div2+1\right]}{2}=1020100\)

Dấu \(=\)khi \(\hept{\begin{cases}\left(x-1\right)\left(2020-x\right)\ge0\\...\\\left(x-1010\right)\left(1011-x\right)\ge0\end{cases}}\Leftrightarrow1010\le x\le1011\).

14 tháng 7 2021

`|x-1|+|x-2|+|x-3|+....+|x-2020|`

`=(|x-1|+|x-2020|)+(|x-2|+|x-2019|)+....+(|x-1000|+|x-1001|)`

Áp dụng bđt `|A|+|B|>=|A+B|`

`=>|x-1|+|x-2020|=|x-1|+|2020-x|>=|x-1+2020-x|=2019`

Tương tự:

`|x-2|+|x-2019|>=2017`

`.................................`

`|x-1000|+|x-1001|>=1`

`=>|x-1|+|x-2|+|x-3|+....+|x-2020|>=2019+2017+....+1`

`=>|x-1|+|x-2|+|x-3|+....+|x-2020|>=((2019+1).2019)/2=2039190`

Dấu "=" xảy ra khi `{((x-1)(2020-x)>=0),((x-2)(2019-x)>=0),(.........),((x-1000)(1001-x)>=0):}`

`<=>{((x-1)(x-2020)<=0),((x-2)(x-2019)<=0),(.........),((x-1000)(x-1001)<=0):}`

`<=>{(1<=x<=2020),(2<=x<=2019),(.........),(1000<=x<=1001):}`

`<=>1000<=x<=1001`

14 tháng 7 2021

còn cách nào nhanh hơn không ạ ? 

1 tháng 3 2022

|x−1|+|x−2|+|x−3|+...+|x−2020||x−1|+|x−2|+|x−3|+...+|x−2020|

=(|x−1|+|2020−x|)+(|x−2|+|2019−x|)+...+(|x−1010|+|1011−x|)=(|x−1|+|2020−x|)+(|x−2|+|2019−x|)+...+(|x−1010|+|1011−x|)

≥|x−1+2020−x|+|x−2+2019−x|+...+|x−1010+1011−x|≥|x−1+2020−x|+|x−2+2019−x|+...+|x−1010+1011−x|

=2019+2017+...+1=2019+2017+...+1

=(2019+1).[(2019−1)÷2+1]2=1020100=(2019+1).[(2019−1)÷2+1]2=1020100

Dấu ==khi \hept⎧⎨⎩(x−1)(2020−x)≥0...(x−1010)(1011−x)≥0⇔1010≤x≤1011\hept{(x−1)(2020−x)≥0...(x−1010)(1011−x)≥0⇔1010≤x≤1011.

14 tháng 12 2021

\(N=\left(\left|x-1\right|+\left|2020-x\right|\right)+\left(\left|x-2\right|+\left|2019-x\right|\right)+...+\left(\left|x-1010\right|+\left|1011-x\right|\right)\\ N\ge\left|x-1+2020-x\right|+\left|x-2+2019-x\right|+...+\left|x-1010+1011-x\right|\\ N\ge2019+2017+...+1=\dfrac{\left(2019+1\right)\left[\left(2019-1\right):2+1\right]}{2}=1020100\\ N_{min}=1020100\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(2020-x\right)\ge0\\...\\\left(x-1010\right)\left(1011-x\right)\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1\le x\le2020\\...\\1010\le x\le1011\end{matrix}\right.\Leftrightarrow1010\le x\le1011\)

17 tháng 12 2021

tại sao lại có (2019+1)[(2019-1):2+1] đấy bạn

11 tháng 11 2021

A

11 tháng 11 2021

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$A=(x-4)^2+1$

Ta thấy $(x-4)^2\geq 0$ với mọi $x$

$\Rightarroe A=(x-4)^2+1\geq 0+1=1$

Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$

-------------------

$B=|3x-2|-5$

Vì $|3x-2|\geq 0$ với mọi $x$ 

$\Rightarrow B=|3x-2|-5\geq 0-5=-5$

Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$C=5-(2x-1)^4$

Vì $(2x-1)^4\geq 0$ với mọi $x$ 

$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$

Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$

----------------

$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$

$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$

Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$

$\Leftrightarrow x=3; y=1$

20 tháng 11 2021

Answer:

Ta áp dụng: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu '' = '' xảy ra khi: \(a.b\ge0\)

\(\Rightarrow A=\left|1-x\right|+\left|x+2020\right|\ge\left|1-x+x+2020\right|=2021\)

Dấu '' = '' xảy ra khi: \(\left(1-x\right).\left(x+2020\right)\ge0\Rightarrow-2020\le x\le1\)

Vậy giá trị nhỏ nhất của biểu thức \(A=2021\) khi \(-2020\le x\le1\)

20 tháng 11 2021

Bạn Yen Nhi: đề ghi là |x+1| nhé