Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=\dfrac{1}{3}\cdot3x^2-m\cdot2x+2m+3=x^2-2m\cdot x+2m+3\)
Để hàm số đồng biến trên R thì y'>=0 với mọi x thuộc R
=>Δ=(-2m)^2-4(2m+3)<=0 và 1>0
=>4m^2-8m-12<=0
=>m^2-2m-3<=0
=>(m-3)(m+1)<=0
=>-1<=m<=3
mà m nguyên
nên \(m\in\left\{-1;0;1;2;3\right\}\)
Theo mình:
để hàm số đồng biến, đk cần là y'=0.
a>0 và \(\Delta'< 0\)
nghịch biến thì a<0
vì denta<0 thì hầm số cùng dấu với a
mình giải được câu a với b
câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb)
câu d dùng viet
câu e mình chưa chắc lắm ^^
y ' = 3 x 2 + 6 x - m
Để hàm số đã cho đồng biến trên R khi và chỉ khi:
y ' = 3 x 2 + 6 x - m ≥ 0 ∀ x ∈ R
⇔ Δ = 9 + 3m ≤ 0 ⇔ m ≤ -3
Vậy giá trị lớn nhất của m để hàm số đã cho đồng biến trên R là m = -3.
Chọn A.
\(-1\le m\le0\)