Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=a2-4ab+4b2+b2-2b+1-7=(a-2b)2+(b-1)2-7 > hoặc =-7
dấu = xảy ra khi a-2b=0
b-1=0
<=>a=2;b=1
..................................
\(Q=\frac{1}{a^2+b^2}+2012+\frac{1}{ab}+4ab.\)
Ta có \(M=\frac{1}{a^2+b^2}+\frac{1}{ab}+4ab=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}+8ab-4ab\)
Áp dụng bđt Cauchy ta có
\(M\ge\frac{4}{\left(a+b\right)^2}+2\sqrt{\frac{1}{2ab}.8ab}-\left(a+b\right)^2=7\)
=> \(Q\ge2012+7=2019\)
Dấu "=" xảy ra khi a=b=\(\frac{1}{2}\)
Vậy......
\(Q=\frac{1}{a^2+b^2}+\frac{2012ab+1}{ab}+4ab=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\left(4ab+\frac{1}{4ab}\right)+\frac{1}{4ab}+2012\)
Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y};\left(x+y\right)^2\ge4xy\),ta có:
\(\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge\frac{4}{1}=4\)
\(\left(4ab+\frac{1}{4ab}\right)^2\ge4.4ab\cdot\frac{1}{4ab}=4\Rightarrow4ab+\frac{1}{4ab}\ge2\)
\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\ge\frac{4}{1}=4\Rightarrow\frac{1}{4ab}\ge1\)
\(\Rightarrow Q\ge4+2+1+2012=2019\)
Dấu "=" xảy ra khi a=b=1/2
Câu hỏi của Soái muội - Toán lớp 8 - Học toán với OnlineMath
Từ gt⇒0≤b≤2−2a3≤2;0≤b≤4−2a≤4⇒0≤b≤2−2a3≤2;0≤b≤4−2a≤4
⇒0≤b≤2⇒0≤b≤2
Tương tự⇒a,b∈[0;2]⇒a,b∈[0;2]
Ta có:
A=a(a−2)−b≤a(a−2)≤0A=a(a−2)−b≤a(a−2)≤0
Dấu = xảy ra⇔a=b=0⇔a=b=0 hoặc a=2,b=0a=2,b=0
Ta có:
A≥a2−2a+2a3−2=(a−23)2−229≥−229A≥a2−2a+2a3−2=(a−23)2−229≥−229
và A≥a2−2a+2a−4=a2−4≥−4A≥a2−2a+2a−4=a2−4≥−4
Vì A≥−4A≥−4 ko xảy ra dấu = nên A≥−229⇔a=23,b=149
1) \(a^3+2a^2-13a+10=a^3-a^2+3a^2-3a-10a+10=\)
\(=a^2\left(a-1\right)+3a\left(a-1\right)-10\left(a-1\right)=\left(a-1\right)\left(a^2+3a-10\right)\)
\(=\left(a-1\right)\left(a^2-2a+5a-10\right)=\left(a-1\right)\left[a\left(a-2\right)+5\left(a-2\right)\right]=\)
\(=\left(a-1\right)\left(a-2\right)\left(a+5\right)\)
b) \(\left(a^2+4b^2-5\right)^2-16\left(ab+1\right)^2=\left(a^2+4b^2-5+4ab+4\right)\left(a^2+4b^2-5-4ab-4\right)\)
\(=\left(a^2+4ab+4b^2-1\right)\left(a^2-4ab+4b^2-9\right)=\left[\left(a+2b\right)^2-1\right]\left[\left(a-2b\right)^2-9\right]=\)
\(=\left(a+2b+1\right)\left(a+2b-1\right)\left(a-2b+3\right)\left(a-2b-3\right)\)
2) \(6a-5b=1\Rightarrow5b=6a-1\Rightarrow25b^2=36a^2-12a+1\)
\(\Rightarrow4a^2+25b^2=40a^2-12a+1=40\left(a^2-2\cdot a\cdot\frac{3}{20}+\left(\frac{3}{20}\right)^2\right)+1-\frac{9}{10}\)
\(=40\left(a-\frac{3}{20}\right)^2+\frac{1}{10}\)
Vậy GTNN của \(4a^2+25b^2\)= 1/10. Xảy ra khi a = 3/20 và b = -1/50.
a) \(M=2a^2+4a+7\)
\(M=2\left(a^2+2a+\frac{7}{2}\right)\)
\(M=2\left(a^2+2.a.1+1+\frac{5}{2}\right)\)
\(M=2\left(a^2+2.a.1+1\right)+2.\frac{5}{2}\)
\(M=2\left(a+1\right)^2+5\ge5\)
Dấu = xảy ra khi :
\(a+1=0\Leftrightarrow a=-1\)
Vậy Mmin = 5 tại x = -1
# Ko bt có đúng ko nữa.....
2
a
\(\left|2x+7\right|+\left|2x-1\right|=\left|2x+7\right|+\left|1-2x\right|\ge\left|2x+7+1-2x\right|=8\)
Dấu "=" xảy ra tại \(-\frac{7}{2}\le x\le\frac{1}{2}\)
3
\(3a^2+4b^2=7ab\)
\(\Leftrightarrow3a^2-7ab+4b^2=0\)
\(\Leftrightarrow\left(3a^2-3ab\right)+\left(4b^2-4ab\right)=0\)
\(\Leftrightarrow3a\left(a-b\right)-4b\left(a-b\right)=0\)
\(\Leftrightarrow\left(3a-4b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\3a=4b\end{cases}}\)
Làm nốt
MK sửa lại đề là tìm giá trị lớn nhất nha. bn tham khảo:
BÀI LÀM.
\(F=-a^2-5b^2-2a+4ab+10b-6\)
\(=-\left(a^2-4ab+4b^2\right)-\left(2a-4b\right)-1-\left(b^2-6b+9\right)+4\)
\(=-\left(a-2b\right)^2-2\left(a-2b\right)-1-\left(b-3\right)^2+4\)
\(=-\left(a-2b-1\right)^2-\left(b-3\right)^2+4\) \(\le\)\(4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}a-2b-1=0\\b-3=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}a=7\\b=3\end{cases}}\)
Vậy...
p/s: tham khảo nhé. mik ko chắc là đúng đâu