K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2017

kết quả là 4 nhưng mk ko biết làm

6 tháng 3 2017

Mình cũng mới hỏi câu này luôn ấy, mình có cách làm nhưng sợ không đúng thôi.

P = x4y4 + x4 + y4 + 1 + 12x2y2 – 16xy – 4

P = x4y4 + x4 + y4 + 1 + 16x2y2 – 16xy + 4 – 4x2y2 – 8

P = x4y4 + x4 + y4 + 1 + (4xy – 2)2 – 4x2y2 – 8

P = (x4 – 2x2y2 + y4) + (x4y4 – 2x2y2 + 1) – 8 + (4xy – 2)2

P = (x2 – y2)2 + (x2y2 – 1)2 – 8 + (4xy – 2)2

P = (x + y)2(x – y)2 + (xy + 1)2(xy – 1)2 + (4xy – 2)2 – 8

P = 4(x – y)2 + (xy + 1)2(xy – 1)2 + 4(2xy – 1)2 – 8

MinP = Min 4(x – y)2 + min (xy + 1)2(xy – 1)2 + min 4(2xy – 1)2 – 8

Min 4(x – y)2 = 0 => x – y = 0 => x = y = 1 => MinP = – 4

Min (xy + 1)2(xy – 1)2 = 0 =>

          TH1: xy = -1 (không có x,y thỏa mãn)

          TH2: xy = 1 => x = y = 1 => Min P = – 4

Min 4(2xy – 1)2 = 0 => xy = \(\frac{1}{2}\)(không có x,y thỏa mãn)

Vậy thì kết quả là -4, Violympic chưa mở nên mình chưa thử kết quả được, thân ái.

20 tháng 4 2023

\(M=x^2+y^2-xy-x+y+1\)

\(4M=4x^2+4y^2-4xy-4x+4y+4\)

\(=\left(4x^2+y^2+1-4xy-4x+2y\right)+\left(3y^2+2y+3\right)\)

\(=\left(2x-y-1\right)^2+3\left(y^2+\dfrac{2}{3}y+\dfrac{1}{9}\right)+\dfrac{8}{3}\)

\(=\left(2x-y-1\right)^2+3\left(y+\dfrac{1}{3}\right)^2+\dfrac{8}{3}\ge\dfrac{8}{3}\)

\(\Rightarrow M\ge\dfrac{2}{3}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}2x-y-1=0\\y+\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=-\dfrac{1}{3}\end{matrix}\right.\)

Vậy \(MinM=\dfrac{2}{3}\)

 

NV
7 tháng 5 2021

\(Q=\dfrac{x^2+xy+y^2+300}{x+y}=\dfrac{\dfrac{1}{2}\left(x+y\right)^2+\dfrac{1}{2}\left(x^2+y^2\right)+300}{x+y}\)

\(Q\ge\dfrac{\dfrac{1}{2}\left(x+y\right)^2+\dfrac{1}{4}\left(x+y\right)^2+300}{x+y}=\dfrac{\dfrac{3}{4}\left(x+y\right)^2+300}{x+y}\)

\(Q\ge\dfrac{2\sqrt{\dfrac{3}{4}\left(x+y\right)^2.300}}{x+y}=30\)

\(Q_{min}=30\) khi \(x=y=10\)

7 tháng 5 2021

cho em hỏi là 
chỗ này \(\dfrac{1}{2}\left(x+y^{ }\right)^{2 }+\dfrac{1}{2}\left(x^2+y^2\right)+300\)
tại sao lại ra như vậy ạ

8 tháng 7 2017

Ta có : A = x(x + 1)(x + 2)(x + 3)

=> A = [x(x + 3)].[(x + 1)(x + 2)]

=> A = (x2 + 3x) . (x2 + 3x + 2)

Đặt a = x2 + 3x + 1 

Khi đó A = (a - 1)(a + 1)

=> A = a2 - 1

=> A = x2 + 3x + 1 - 1

=> A = x2 + 3x

=> A = x2 + 3x + \(\frac{4}{9}-\frac{4}{9}\) 

\(\Rightarrow A=\left(x+\frac{2}{3}\right)^2-\frac{4}{9}\)

Mà \(\left(x+\frac{2}{3}\right)^2\ge0\forall x\)

Nên : \(A=\left(x+\frac{2}{3}\right)^2-\frac{4}{9}\ge-\frac{4}{9}\forall x\)

Vậy Amin = \(\frac{-4}{9}\) , dầu "=" xảy ra khi và chỉ khi x = \(-\frac{2}{3}\)

18 tháng 4 2020

M = x^2 + y^2 - xy - x + y + 1

12M = 12x^2 + 12y^2 - 12xy - 12x + 12y + 12

12M = 3(4x^2 + y^2 + 1 - 4xy - 4x + 2y) + 9y^2 + 6y + 9

12M = 3(2x - y - 1)^2 + (3y + 1)^2 + 8

12M > 8

tự xét dấu = 

18 tháng 4 2020

M = x2 + y2 - xy - x + y +1

2M = 2x2 + 2y- 2xy - 2x + 2y + 2

2M = ( x2 - 2xy + y2 ) + ( x2 -2x +1 ) + ( y2 + 2y + 1)

2m = ( x - y )2 + ( x-1 )2 + ( y + 1 )2

Ta có \(\left(x-y\right)^2\ge\forall x;y\)

          \(\left(x-1\right)^2\ge0\forall x\)

          \(\left(y+1\right)^2\ge0\forall y\)

\(\Rightarrow2M\ge0\forall x;y\)

Dấu "=" xảy ra khi x - y = 0; x - 1 = 0; y + 1 = 0

                      <=> x = y ; x = 1; y = -1 ( vô lí )

Vậy không tồn tại giá trị nhỏ nhất nào của biểu thức M

26 tháng 12 2021

a: \(A=4x^2-4x+1-4=\left(2x-1\right)^2-4>=-4\forall x\)

Dấu '=' xảy ra khi x=1/2