Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1L
a, xy+x-y+10=0
x(y+1)-y-1=9
x(y+1)-(y+1)=9
(x-1)(y+1)=9
Ta có bảng:
x-1 | 1 | -1 | 3 | -3 | 9 | -9 |
y+1 | 9 | -9 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 4 | -2 | 10 | -8 |
y | 8 | -10 | 2 | -4 | 0 | -2 |
b, xy+3x+y=10
x(y+3)+(y+3)=13
(x+1)(y+3)=13
tiếp tục giống a
bài 2:
a, Vì |x-5| \(\ge\)0
=>A=|x-5|-100 \(\ge\) -100
Dấu "=" xảy ra khi x = 5
Vậy GTNN của A = -100 khi x=5
b, vì \(\hept{\begin{cases}\left|x+y\right|\ge0\\\left|y-10\right|\ge0\end{cases}\Rightarrow\left|x+y\right|+\left|y-10\right|\ge0\Rightarrow B=\left|x+y\right|+\left|y-10\right|+8\ge8}\)
Dấu "="xảy ra khi x=-10,y=10
Vậy GTNN của B = 8 khi x=-10,y=10
A = |\(x\) + 19| + 1980
|\(x\) + 19| ≥ 0 \(\forall\) \(x\)
|\(x\) + 19| + 1980 ≥ 1980 ∀ \(x\)
A ≥ 1980 dấu bằng xảy khi \(x\) + 19 = 0 hay \(x\) = -19
Kết luận A đạt giá trị nhỏ nhất là 1980 khi \(x\) = -19
B = |\(x\) + 20| + |y - 21| + 2020
|\(x\) + 20| ≥ 0 ∀ \(x\); |y - 21| ≥ 0 ∀ y
B = |\(x\) + 20| + |y - 21| + 2020 ≥ 2020
B ≥ 2020 dấu bằng xảy ra khi \(\left\{{}\begin{matrix}x+20=0\\y-21=0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=-20\\y=21\end{matrix}\right.\)
Bmin = 2020 khi (\(x;y\)) = (-20; 21)
A = | x + 5 | + 20
Ta có: | x + 5 | > 0
=> | x + 5 | + 20 > 20
=> GTNN của A là 20
<=> x + 5 = 0
<=> x = -5.
B = | x - 3 | - 10
Ta có: | x - 3 | > 0
=> | x - 3 | - 10 > -10
=> GTNN của B là -10
<=> x - 3 = 0
<=> x = 3.
3x=4y-21
<=> x=(4y/3)-7
Thay x=1; x=2; .... x=9
Được 2 nghiệm:
x=1 <=> 8=(4y/3) <=> 24=4y <=>y=6
x=5 <=> 12=(4y/3) <=> 36=4y <=> y=9
Đáp số:
x=1 y=6
x=5 y=9