Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=-\left|3x+8\right|+2017\le2017\)
Dấu '=' xảy ra khi x=-8/3
b: \(\left(2x-9\right)^2+2017>=2017\)
\(\Leftrightarrow B=\dfrac{7}{\left(2x-9\right)^2+2017}\le\dfrac{7}{2017}\)
Dấu '=' xảy ra khi x=9/2
c: \(C=-\left(19-5x\right)^2+1890\le1890\)
Dấu '=' xảy ra khi x=19/5
d: \(D=-\left(x+2\right)^2-\left(x+2y\right)^2+12\le12\)
Dấu '=' xảy ra khi x=-2 và x=-2y
=>x=-2 và y=1
B1: Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)
Ta có: \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{a+b}{a+b+2c+2d}=\frac{1}{3}\)
\(\Rightarrow\frac{a+b+2c+2d}{a+b}=3\)\(\Rightarrow1+\frac{2\left(c+d\right)}{a+b}=3\)\(\Rightarrow\frac{2\left(c+d\right)}{a+b}=2\)\(\Rightarrow\frac{c+d}{a+b}=1\)(1)
Lại có: \(\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{b+c}{b+c+2\left(a+d\right)}=\frac{1}{3}\)
\(\Rightarrow\frac{b+c+2\left(a+d\right)}{b+c}=3\)\(\Rightarrow1+\frac{2\left(a+d\right)}{b+c}=3\)\(\Rightarrow\frac{2\left(a+d\right)}{b+c}=2\)\(\Rightarrow\frac{a+d}{b+c}=1\)(2)
Ta có: \(\frac{c}{a+b+d}=\frac{d}{a+b+c}=\frac{c+d}{c+d+2\left(a+b\right)}=\frac{1}{3}\)
\(\Rightarrow\frac{2\left(a+b\right)+c+d}{c+d}=3\)\(\Rightarrow\frac{2\left(a+b\right)}{c+d}+1=3\)\(\Rightarrow\frac{2\left(a+b\right)}{c+d}=2\)\(\Rightarrow\frac{a+b}{c+d}=1\)(3)
Lại có: \(\frac{a}{b+c+d}=\frac{d}{a+b+c}=\frac{a+d}{a+d+2\left(b+c\right)}=\frac{1}{3}\)
\(\Rightarrow\frac{2\left(c+b\right)+a+d}{a+d}=3\)\(\Rightarrow\frac{2\left(c+b\right)}{a+d}+1=3\)\(\Rightarrow\frac{2\left(b+c\right)}{a+d}=2\)\(\Rightarrow\frac{b+c}{a+d}=1\)(4)
Từ (1) , (2) , (3) , (4)
\(\Rightarrow P=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)
B2: a, Vì (x4 + 3)2 ≥ 0
Dấu " = " xảy ra <=> x4 + 3 = 0
<=> x4 = 3
<=> x = 4√3
Vậy GTNN A = 0 khi x = 4√3
b, Vì |0,5 + x| ≥ 0 ; (y - 1,3)4 ≥ 0
=> |0,5 + x| + (y - 1,3)4 ≥ 0
=> |0,5 + x| + (y - 1,3)4 + 20 ≥ 20
Dấu " = " xảy ra <=> \(\hept{\begin{cases}0,5+x=0\\y-1,3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-0,5\\y=1,3\end{cases}}\)
Vậy GTNN V = 20 khi x = -0,5 và y = 1,3
c, Ta có: \(C=\frac{5x-19}{x-4}=\frac{5\left(x-4\right)+1}{x-4}=5+\frac{1}{x-4}\)
C đạt GTNN <=> \(\frac{1}{x-4}\)đạt GTNN <=> x - 4 đạt GTLN
<=> x > 4 , x nguyên dương
Vậy C có GTNN <=> x > 4 , x nguyên dương
(Ko chắc)
( t tham khảo 1 số bài khác thì ng` ta giải x = 3 thì C có GTNN = 4 )
Bài 3:
a, Để N có GTLN <=> 2(x - 2014)2 + 3 có GTNN
Vì (x - 2014)2 ≥ 0 => 2(x - 2014)2 ≥ 0
=> 2(x - 2014)2 + 3 ≥ 3
\(\Rightarrow\frac{1}{2\left(x-2014\right)^2+3}\le\frac{1}{3}\)
Dấu " = " xảy ra <=> x - 2014 = 0
<=> x = 2014
Vậy GTLN N = 1/3 khi x = 2014
b, Ta có: \(P=\frac{27-2x}{12-x}=\frac{2\left(12-x\right)+3}{12-x}=2+\frac{3}{12-x}\)
Để P có GTLN <=> \(\frac{3}{12-x}\)có GTLN <=> 12 - x có GTNN ( (12 - x) ∈ N ; 12 - x ≠ 0)
<=> 12 - x = 1
<=> x = 11
\(\Rightarrow P=2+\frac{3}{12-x}=2+3=5\)
Đặt \(\left(x-7\right)^2+1\) là A
A = \(\left(x-7\right)^2+1\)
Ta có: \(\left(x-7\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-7\right)^2+1\ge1\) với mọi x
=> GTNN của A là 1 khi \(\left(x-7\right)^2=0\)
\(\Rightarrow x-7=0\rightarrow x=7\)
Vậy GTNN của A là 1 khi x = 7
\(\left(5x-3\right)^{2018}-2017\)
Đặt \(\left(5x-3\right)^{2018}-2017\) là B
Ta có: \(\left(5x-3\right)^{2018}\ge0\) với mọi x
\(\Rightarrow\left(5x-3\right)^{2018}-2017\ge-2017\) với mọi x
=> GTNN của B là -2017 khi\(\left(5x-3\right)^{2018}=0\)
\(\Rightarrow5x-3=0\Rightarrow5x=3\Rightarrow x=\dfrac{3}{5}\)
Vậy GTNN của B là -2017 khi \(x=\dfrac{3}{5}\)
Bài 1 :
a) Ta thấy : \(\left(x^2-9\right)^2\ge0\)
\(\left|y-2\right|\ge0\)
\(\Leftrightarrow A=\left(x^2-9\right)^2+\left|y-2\right|-1\ge-1\)
Dấu " = " xảy ra :
\(\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\in\left\{3;-3\right\}\\y=2\end{cases}}\)
Vậy \(Min_A=-1\Leftrightarrow\left(x;y\right)\in\left\{\left(3;2\right);\left(-3;2\right)\right\}\)
b) Ta thấy : \(B=x^2+4x-100\)
\(=\left(x+4\right)^2-104\ge-104\)
Dấu " = " xảy ra :
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy \(Min_B=-104\Leftrightarrow x=-4\)
c) Ta thấy : \(C=\frac{4-x}{x-3}\)
\(=\frac{3-x+1}{x-3}\)
\(=-1+\frac{1}{x-3}\)
Để C min \(\Leftrightarrow\frac{1}{x-3}\)min
\(\Leftrightarrow x-3\)max
\(\Leftrightarrow x\)max
Vậy để C min \(\Leftrightarrow\)\(x\)max
p/s : riêng câu c mình không tìm được C min :( Mong bạn nào giỏi tìm hộ mình
Bài 2 :
a) Ta thấy : \(x^2\ge0\)
\(\left|y+1\right|\ge0\)
\(\Leftrightarrow3x^2+5\left|y+1\right|-5\ge-5\)
\(\Leftrightarrow C=-3x^2-5\left|y+1\right|+5\le-5\)
Dấu " = " xảy ra :
\(\Leftrightarrow\hept{\begin{cases}x=0\\y+1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
Vậy \(Max_A=-5\Leftrightarrow\left(x;y\right)=\left(0;-1\right)\)
b) Để B max
\(\Leftrightarrow\left(x+3\right)^2+2\)min
Ta thấy : \(\left(x+3\right)^2\ge0\)
\(\Leftrightarrow\left(x+3\right)^2+2\ge2\)
Dấu " = " xảy ra :
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy \(Max_B=\frac{1}{2}\Leftrightarrow x=-3\)
c) Ta thấy : \(\left(x+1\right)^2\ge0\)
\(\Leftrightarrow x^2+2x+1\ge0\)
\(\Leftrightarrow-x^2-2x-1\le0\)
\(\Leftrightarrow C=-x^2-2x+7\le8\)
Dấu " = " xảy ra :
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy \(Max_C=8\Leftrightarrow x=-1\)