\(M=x^2+4x+2\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2018

\(M=x^2+4x+2\)

\(M=x^2+4x+4-2=\left(x+2\right)^2-2\ge-2\)

\("="\Leftrightarrow x=-2\)

\(N=x^2+3x+4=x^2+3x+\dfrac{9}{4}+\dfrac{7}{4}\)

\(N=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

\("="\Leftrightarrow x=-\dfrac{3}{2}\)

\(P=x^2+4y^2+4x-12y+8\)

\(P=\left(x^2+4x+4\right)+\left(4y^2-12y+9\right)-5\)

\(P=\left(x+2\right)^2+\left(2y-3\right)^2-5\ge-5\)

\("="\Leftrightarrow x=-2;y=\dfrac{3}{2}\)

15 tháng 10 2016

\(a,x^2-4x+4y^2+12y+13\)

Ta có : 

\(A=x^2-4x+4y^2+12y+13\)

\(=\left(x^2-4x+2^2\right)+\left(\left(2y\right)^2+12y+3^2\right)\)

\(=\left(x-2\right)^2+\left(2y+3\right)^2\)

Vì \(\left(x-2\right)^2\ge0\)\(\forall x\in R\)

    \(\left(2y+3\right)^2\ge0\) \(\forall x\in R\)

\(\Rightarrow A=x^2-4x+4y^2+12y+13\ge0\) \(\forall x\in R\)

Dấu '=' xảy ra khi và chỉ khi \(\hept{\begin{cases}x-2=0\\2y+3=0\end{cases}}\)  \(\Leftrightarrow\hept{\begin{cases}x=2\\y=-\frac{3}{2}\end{cases}}\)

Vậy \(min_A=0\) khi \(x=1\) và \(y=-\frac{3}{2}\) 

22 tháng 10 2021

\(1,a,A=x^2-6x+25\)

\(=x^2-2.x.3+9-9+25\)

\(=\left(x-3\right)^2+16\)

Ta có :

\(\left(x-3\right)^2\ge0\)Với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

Hay \(A\ge16\)

\(\Rightarrow A_{min}=16\)

\(\Leftrightarrow x=3\)

22 tháng 10 2021

\(b,B=4x^2+4x-2\)

\(B=4x^2+4x+1-3\)

\(B=\left(4x^2+4x+1\right)-3\)

\(B=\left(2x+1\right)^2-3\)

Ta có : 

\(\left(2x+1\right)^2\ge0\)với mọi x

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)

\(\Leftrightarrow B\ge-3\)

\(\Rightarrow B_{min}=-3\)

\(\Leftrightarrow x=-\frac{1}{2}\)

NV
11 tháng 10 2020

a/ Đề sai, hệ số của \(y^2\) phải âm thì biểu thức mới tồn tại max

b/ \(B=-3x^2-9x-7=-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\le-\frac{1}{4}\)

\(B_{max}=-\frac{1}{4}\) khi \(x=-\frac{3}{2}\)

c/ \(C=-\left(x^2+y^2+1-2xy-2x+2y\right)-3\left(y^2-4y+4\right)+5\)

\(C=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\)

\(C_{max}=5\) khi \(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

8 tháng 10 2016

1. D = 3( x2 - 2x.1/3 + 1/9) -1/3 +1

GTNN D = 5/6

dài quá, nản quá

 

9 tháng 10 2016

tks bn

17 tháng 10 2016

a)\(A=4x^2+4x+11\)

\(=4x^2+4x+1+10\)

\(=\left(2x+1\right)^2+10\ge10\)

Dấu = khi \(x=\frac{-1}{2}\)

Vậy MinA=10 khi \(x=\frac{-1}{2}\)

b)\(B=3x^2-6x+1\)

\(=3x^2-6x+3-2\)

\(=3\left(x^2-2x+1\right)-2\)

\(=3\left(x-1\right)^2-2\ge-2\)

Dấu = khi \(x=1\)

Vậy MinB=-2 khi \(x=1\)

c)\(C=x^2-2x+y^2-4y+6\)

\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)

Dấu = khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Vậy MinC=1 khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

29 tháng 10 2018

\(A=x^2-8x+1=\left(x^2-8x+16\right)-15=\left(x+4\right)^2-15\)

Ta có \(\left(x+4\right)^2\ge0\Rightarrow\left(x+4\right)^2-15\le-15\)

\(\Rightarrow Max_A=-15\Leftrightarrow\left(x+4\right)^2-15=-15\)

\(\Leftrightarrow\left(x+4\right)^2=0\Leftrightarrow x=-4\)

29 tháng 10 2018

a) ta có: A = x^2 - 8x + 1 = x^2 - 2.4.x + 16 - 15 = (x-4)^2 -15

=> giá trị nhỏ nhất của A = -15

b) ta có: B = 4 - x^2 + 4x = - (x^2 -4x + 4) + 8 = -(x-2)^2 +8

=> giá trị lớn nhất của B = 8

c) ta có: C = 3x^2 - 2x + 1

\(^2\ \)=> 3C =9 x^2 - 6x + 3

3C = 9x^2 - 2.3.x + 1 + 2

3C = (3x-1)^2 + 2

=> giá trị nhỏ nhất của 3C = 2 => giá trị nhỏ nhất của C = 2/3

15 tháng 3 2017

1) a) Đặt biểu thức là A

\(A=2x^2+4y^2-4xy-4x-4y+2017\)

\(A=\left(x-2y\right)^2+x^2-4x-4y+2017\)

\(A=\left(x-2y\right)^2+2\left(x-2y\right)+x^2-6x+2017\)

\(A=\left(x-2y-1\right)^2+\left(x+3\right)^2+2008\)

Vậy: MinA=2008 khi x=-3; y=-2

15 tháng 3 2017

3) a) \(A=\dfrac{1}{x^2+x+1}\)

\(B=x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\Rightarrow B\ge\dfrac{3}{4}\Rightarrow A\ge\dfrac{4}{3}\)

Vậy MinA\(\dfrac{4}{3}\) khi x=-0,5

25 tháng 7 2019

\(A=x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\)

Vậy \(A_{min}=1\Leftrightarrow x=-1\)

25 tháng 7 2019

\(B=x^2+4x=6=x^2+4x+4+2=\left(x+2\right)^2+2\ge2>0\)

Vậy \(B_{min}=2\Leftrightarrow x=-2\)

Câu 3: 

\(B=-3\left(x^2-\dfrac{1}{3}x-\dfrac{1}{3}\right)\)

\(=-3\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}-\dfrac{13}{36}\right)\)

\(=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}< =\dfrac{13}{12}\)

Dấu '=' xảy ra khi x=1/6

Bài 4: 

\(C=\left(x+y\right)^2-4\left(x+y\right)+1\)

=3^2-4*3+1

=9+1-12

=-2