Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=x2+10x+35=x2+10x+25+10=x2+2*x*5+52+10=(x+5)2+10
Ta có: (x+5)2>=0(với mọi x)
=> (x+5)2+10>=10(với mọi x)
hay A>=10(với mọi x)
Do đó, GTNN của A là 10 khi: (x+5)2=0
x+5=0
x=0-5
x=-5
Vậy GTNN của A là 10 tại x=-5
\(P=2x^2+y^2-10x-2xy+2019\)
\(P=x^2-2xy+y^2+x^2-10x+25+1994\)
\(P=\left(x^2-2xy+y^2\right)+\left(x^2-2\cdot x\cdot5+5^2\right)+1994\)
\(P=\left(x-y\right)^2+\left(x-5\right)^2+1994\ge1994\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\x=5\end{cases}\Rightarrow}x=y=5}\)
Vậy.....
\(D=-x^2-y^2+xy+2x+2y\)
\(\Rightarrow D=-\dfrac{x^2}{2}+xy-\dfrac{y^2}{2}-\dfrac{x^2}{2}+2x-\dfrac{y^2}{2}+2y\)
\(\Rightarrow D=-\left(\dfrac{x^2}{2}-xy+\dfrac{y^2}{2}\right)-\left(\dfrac{x^2}{2}-2x\right)-\left(\dfrac{y^2}{2}-2y\right)\)
\(\Rightarrow D=-\left(\dfrac{x^2}{2}-2.\dfrac{x}{\sqrt[]{2}}.\dfrac{y}{\sqrt[]{2}}+\dfrac{y^2}{2}\right)-\left(\dfrac{x^2}{2}-2.\dfrac{x}{\sqrt[]{2}}.\sqrt[]{2}+2\right)-\left(\dfrac{y^2}{2}-2.\dfrac{y}{\sqrt[]{2}}.\sqrt[]{2}+2\right)+2+2\)
\(\Rightarrow D=-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2+4\)
mà \(\left\{{}\begin{matrix}-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2\le0,\forall x;y\\-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2\le0,\forall x\\-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2\le0,\forall y\end{matrix}\right.\)
\(\Rightarrow D=-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2+4\le4\)
\(\Rightarrow GTLN\left(D\right)=4\left(tạix=y=2\right)\)
\(A=\frac{3x^2+8x+6}{x^2+2x+1}\) \(\left(x\ne\pm1\right)\)
\(A=\frac{\left(3x^2+6x+3\right)+\left(2x+3\right)}{\left(x+1\right)^2}\)
\(A=\frac{3\left(x+1\right)^2+2x+3}{\left(x+1\right)^2}\)
\(A=3+\frac{2x+3}{\left(x+1\right)^2}\)
Vì\(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow3+\frac{2x+3}{\left(x+1\right)^2}\ge3\Leftrightarrow A\ge3\)
Dấu "="xảy ra khi \(2x+3=0\Rightarrow x=\frac{-3}{2}\)
Gọi k là một giá trị của A ta có:
\(\frac{\left(3x^2-8x+6\right)}{\left(x^2+2x+1\right)}=k\)
\(\Leftrightarrow3x^2-8x+6=k\left(x^2-2x+1\right)\)
\(\Leftrightarrow\left(3-k\right)x^2-\left(8-2k\right)x+6-k=0\)(*)
Ta cần tìm k để PT (*) có nghiệm
Xét: \(\Delta=\left(8-2k\right)^2-4\left(3-k\right)\left(6-k\right)=64-32k+4k^2-4\left(18-9k+k^2\right)=4k-8\)
Để PT (*) có nghiệm thì: \(\Delta\ge0\Leftrightarrow4k-8\ge0\Leftrightarrow k\ge2\)
Dấu "=" xảy ra khi: \(-\left(8-2.2\right)x+6-2=0\Leftrightarrow-4x+4=0\Rightarrow x=1\)
Vậy: \(B\ge2\)suy ra: B = 2 khi x = 1
\(A=4x^2-12x+9-\left(x^2+6x+5\right)+2\)
\(=3x^2-18x+6\)
\(=3\left(x^2-6x+9\right)-21\)
\(=3\left(x-3\right)^2-21\ge-21\)
\(A_{min}=-21\) khi \(x=3\)
\(x^2\left(2-x^2\right)\)
\(=x^2.2-\left(x^2\right)^2\)
\(=2x^2-\left(x^2\right)^2\)
\(=-x^4+2x^2\)
=> BT ko có GTLN/GTNN
\(x^2+10x+2\)
\(=x^2+10x+25-23\)
\(=\left(x+5\right)^2-23\ge-23\)
(Dấu "="\(\Leftrightarrow x+5=0\Leftrightarrow x=-5\))
\(x^2+10x+2\)
\(=x^2+10x+25-23\)
\(=\left(x+5\right)^2-23\ge-23\)
Dấu ''='' \(\Leftrightarrow x+5=0\Leftrightarrow x=-5\)