Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\left(2x+\frac{1}{5}\right)^{2016}+1,\left(3\right)\)
Có: \(\left(2x+\frac{1}{5}\right)^{2016}\ge0\text{ với mọi }x\)
\(\Rightarrow\left(2x+\frac{1}{5}\right)^{2016}+1,\left(3\right)\ge1,\left(3\right)\text{ với mọi }x\)
\(\Rightarrow A\ge1,\left(3\right)\text{ với mọi }x\)
Vậy GTNN của A = 1,(3)
Dấu "=" xảy ra khi: \(\left(2x+\frac{1}{5}\right)^{2016}=0\\ \Leftrightarrow2x+\frac{1}{5}=0\\ \Leftrightarrow2x=-\frac{1}{5}\\ \Leftrightarrow x=\frac{-1}{10}\)
b, \(B=-5\sqrt{x}+1,0\left(3\right)\)
Có: \(\sqrt{x}\ge0\text{ với mọi }x\)
\(\Rightarrow-5\sqrt{x}\le0\text{ với mọi }x\)
\(\Rightarrow-5\sqrt{x}+1,0\left(3\right)\le1,0\left(3\right)\text{ với mọi }x\)
\(\Rightarrow B\le1,0\left(3\right)\text{ với mọi }x\)
Vậy GTLN của B = 1,0(3)
Dấu "=" xảy ra khi: \(\sqrt{x}=0\\ \Leftrightarrow x=0\)
1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)
\(2^x.2^2.3^x.3.5^x=10800\)
\(\Rightarrow\left(2.3.5\right)^x.12=10800\)
\(\Rightarrow30^x=\frac{10800}{12}=900\)
\(\Rightarrow30^x=30^2\)
\(\Rightarrow x=2\)
b,\(3^{x+2}-3^x=24\)
\(\Rightarrow3^x\left(3^2-1\right)=24\)
\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)
2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Dấu bằng xảy ra khi \(ab\ge0\)
Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)
\(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)
Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)
Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)
d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)
Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)
Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)
\(\Rightarrow B\le1\)
Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)
\(\Rightarrow x\le2017\)
Vậy \(Max_B=1\) khi \(x\le2017\)
để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)
suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)
Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3
\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))
Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!
Giá trị lớn nhất nhá
\(a,-\left(x-3\right)^2+2\)
Ta thấy \(\left(x-3\right)^2\ge0\Rightarrow-\left(x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-3\right)^2+2\le2\)
Dấu "=" xảy ra khi \(x-3=0\Leftrightarrow x=3\)
...
\(b,-\left|2x-1\right|-5\)
Ta thấy \(\left|2x-1\right|\ge0\Rightarrow-\left|2x-1\right|\le0\forall x\)
\(\Rightarrow-\left|2x-1\right|-5\le-5\)
Dấu "=" xảy ra khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)
....
c, \(\sqrt{3}-x^2\)
Ta thấy \(x^2\ge0\Rightarrow-x^2\le0\forall x\)
\(\Rightarrow\sqrt{3}-x^2\le\sqrt{3}\)
Dấu "=" xảy ra khi \(x=0\)
...
\(M=\frac{\sqrt{2x-5}-3}{\sqrt{2x-5}+1}=\frac{\sqrt{2x-5}+1-4}{\sqrt{2x-5}+1}=1-\frac{4}{\sqrt{2x-5}+1}\ge1-\frac{4}{1}\)
Dấu = xảy ra khi \(\sqrt{2x-5}=0\)
\(\Rightarrow2x-5=0\Rightarrow2x=5\Rightarrow x=\frac{5}{2}\)
Vậy...
\(M=\frac{\sqrt{2x-5}-3}{1+\sqrt{2x-5}}=1-\frac{4}{1+\sqrt{2x-5}}\)
\(1+\sqrt{2x-5}\ge1\left(\forall x\right)\Rightarrow\frac{4}{1+\sqrt{2x-5}}\le4\left(\forall x\right)\)
\(\Rightarrow\frac{-4}{1+\sqrt{2x-5}}\ge-4\forall x\Rightarrow M=1-\frac{4}{1+\sqrt{2x-5}}\ge-3\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\sqrt{2x-5}=0\Leftrightarrow2x-5=0\Leftrightarrow x=2,5\)
Vậy GTNN của M là -3 khi x = 2,5