Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{\sqrt{2x-5}-3}{\sqrt{2x-5}+1}=\frac{\sqrt{2x-5}+1-4}{\sqrt{2x-5}+1}=1-\frac{4}{\sqrt{2x-5}+1}\ge1-\frac{4}{1}\)
Dấu = xảy ra khi \(\sqrt{2x-5}=0\)
\(\Rightarrow2x-5=0\Rightarrow2x=5\Rightarrow x=\frac{5}{2}\)
Vậy...
\(M=\frac{\sqrt{2x-5}-3}{1+\sqrt{2x-5}}=1-\frac{4}{1+\sqrt{2x-5}}\)
\(1+\sqrt{2x-5}\ge1\left(\forall x\right)\Rightarrow\frac{4}{1+\sqrt{2x-5}}\le4\left(\forall x\right)\)
\(\Rightarrow\frac{-4}{1+\sqrt{2x-5}}\ge-4\forall x\Rightarrow M=1-\frac{4}{1+\sqrt{2x-5}}\ge-3\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\sqrt{2x-5}=0\Leftrightarrow2x-5=0\Leftrightarrow x=2,5\)
Vậy GTNN của M là -3 khi x = 2,5
Vì \(2x⋮x\Rightarrow-5⋮x\)
\(\Rightarrow x\inƯ\left(-5\right)=\left\{5;-5\right\}\)
Thì Mmin = 1
a) Ta có: \(\left(x-2\right)^2\ge0\forall x\)
nên Dấu '=' xảy ra khi x-2=0
hay x=2
Vậy: Gtnn của biểu thức \(\left(x-2\right)^2\) là 0 khi x=2
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
1) \(A=x^2+4\ge4\)
\(ĐTXR\Leftrightarrow x=0\)
2) \(B=2x^2-\dfrac{3}{2}\ge-\dfrac{3}{2}\)
\(ĐTXR\Leftrightarrow x=0\)
3) \(\left(2x-3\right)^2-5\ge-5\)
\(ĐTXR\Leftrightarrow x=\dfrac{3}{2}\)
nhìu dữ
a)3/2
b)-1/3
c)-5/6
d)0
e)-1/2
Bài 2
a=3
b=1/2
c=-1/3
d=0
e=9
f=-2/3