Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2,7+\left|x-1,5\right|\ge2,7\)
\(minA=2,7\Leftrightarrow x=1,5\)
b) \(B=\left|4,1+x\right|-6,3\ge-6,3\)
\(minB=-6,3\Leftrightarrow x=-4,1\)
a)
Ta có:
\(\left|x-1,5\right|\)≥0
=>\(2,7+\left|x-1,5\right|\)≥2,7
GTNN:A=2,7 khi x-1,5=0
x=1,5
Ta có:
\(\left|4,1+x\right|\)≥0
=>\(\left|4,1+x\right|-6,3\)≥-6,3
GTNN:B=6,3 khi 4,1+x=0
x=-4,1
\(P=\left(x^2-3\right)\left(x^2+2\right)\ge-6\forall x\)
Dấu '=' xảy ra khi x=0
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8
Đặt \(x^2-3=t\)
\(\Rightarrow P=t\left(t+5\right)=t^2+5t\)
\(=t^2+2.t.\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{25}{4}\)
\(=\left(t+\dfrac{5}{2}\right)^2-\dfrac{25}{4}\ge-\dfrac{25}{4}\)
\(\Rightarrow...\)
1 )Vì \(\left(x+2\right)^2\ge0;\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+1\ge1\)
Dấu "=: xảy ra <=> \(\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ........
2 ) \(\frac{1}{\left(x-2\right)^2+2}\ge\frac{1}{2}\)
Dấu "=" xảy ra <=> x = 2
Vậy ..........
A =\(1,5+\left|2-x\right|\)
Vì \(\left|2-x\right|>=0\)
=> A =\(1,5+\left|2-x\right|>=1,5\)
Dấu ( = ) xảy ra khi \(\left|2-x\right|=0\)
\(2-x=0\)
\(x=0\)
Vậy giá trị nhỏ nhất của A =\(1,5+\left|2-x\right|\)là 1,5 khi x = 2
\(A=1,5+\left|2-x\right|\ge1,5\)
\(MinA=1,5\Leftrightarrow2-x=0\)
\(\Rightarrow x=2\)