K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 10 2019

\(P=x^2+4x+4+y^2-y+\frac{1}{4}+\frac{8055}{4}\)

\(=\left(x+2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{8055}{4}\ge\frac{8055}{4}\)

\(P_{min}=\frac{8055}{4}\) khi \(\left\{{}\begin{matrix}x=-2\\y=\frac{1}{2}\end{matrix}\right.\)

25 tháng 10 2019

\(\left(x^2+4x+4\right)+\left(y^2-2.y.\frac{1}{2}+\frac{1}{4}\right)+\frac{8055}{4}\ge\frac{8055}{4}\)

25 tháng 10 2019

\(x^2+y^2+4x-y+2018\)

\(=x^2+4x+4+y^2-y+\frac{1}{4}+\frac{8055}{4}\)

\(=\left(x+2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{8055}{4}\ge\frac{8055}{4}\forall x;y\)

Dấu"=" xả ra<=> \(\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{2}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=\frac{1}{2}\end{cases}}}\)

Vậy.

28 tháng 12 2017

Có x^2 + 2xy + 4x + 4y + 2y^2 + 3 = 0

--> (x+y)^2 + 4(x+y) + 4+ y^2 - 1 = 0

--> (x+y+2)^2 + y^2 = 1

-->(x+y+2)^2 <= 1 ( vì y^2 >=1)

--> -1 <= x+y+2 <=1

--> 2015 <= x+y+2018 <= 2017

hay 2015 <= Q , dau bang xay ra khi x+y+2=-1 --> x+y=-3

Q<=2017, dau bang xay ra khi  x+y+2=1 --> x+y=-1

Vậy giá trị nhỏ nhất của Q là 2015 khi x+y =-3

 giá trị lớn nhất của Q là 2017 khi x+y=-1

14 tháng 5 2020

giá trị lớn nhất là 2017

trả lời dùm mình , giúp mình

9 tháng 3 2020

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

9 tháng 3 2020

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

21 tháng 11 2018

Min A=10<=>x=-1/2

Min B=2<=>x=1,y=2

1 tháng 7 2021

Đặt A = 4x2 + y2 - 4x - 2y + 3 

= (4x2 - 4x + 1) + (y2 - 2y + 1) + 1

= (2x - 1)2 + (y - 1)2 + 1 \(\ge1\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0,5\\y=1\end{cases}}\)

Vậy Min A = 1 <=> x = 0,5 ; y = 1

22 tháng 9 2019

\(A=x^2+y^2-4x-2y+12\)

\(=\left(x^2-4x+4\right)+\left(y^2-2x+1\right)+7\)

\(=\left(x-2\right)^2+\left(y-1\right)^2+7\ge7\)

Vậy \(A_{min}=7\Leftrightarrow\hept{\begin{cases}x-2=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)