![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(A=x^2+6x+15\)
\(A=x^2+6x+3^2-3^2+15\)
\(A=\left(x+3\right)^2+6\)
Vì \(\left(x+3\right)^2\ge0\) với mọi x nên (x+3)2+6>0 với mọi x
b) A có giá trị nhỏ nhất
A=(x+3)2+6
=> Amin=6<=>(x+3)2=0<=>x=-3
Vậy: Gtnn của A là 6 khi x= -3
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
a) A = x2 + 6x + 10 = (x2 + 6x + 9) + 1 = (x + 3)2 + 1 \(\ge\)1 \(\forall\)x
Dấu "=" xảy ra <=> x + 3 = 0 <=> x = -3
Vậy MinA = 1 <=> x = -3
b) B = 4x2 - 12x + 13 = 4(x2 - 3x + 9/4) + 4 = 4(x - 3/2)2 + 4 \(\ge\)4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2
Vậy MinB = 4 <=> x = 3/2
![](https://rs.olm.vn/images/avt/0.png?1311)
D = (x-1)(x+2)(x+3)(x+6)
D = (x-1)(x+6)(x+2)(x+3)
D = (x^2 + 6x - x - 6)(x^2 + 3x + 2x + 6)
D = (x^2 + 5x - 6)(x^2 + 5x + 6)
Đặt t = x^2 + 5x
=> D = (t - 6)(t + 6)
D = t^2 - 36
Có t^2 >= 0 => D = t^2 - 36 >= -36
Dấu ''='' xảy ra khi t^2 = 0 => t = 0 => x^2 + 5x = 0 => x.(x+5) = 0 => x = 0 hoặc x = -5.
Vậy Min của D bằng -36 khi x = 0 hoặc x = -5.
D = (x-1)(x+2)(x+3)(x+6)
D = [(x-1)(x+6)].[(x+2)(x+3)]
D = (x^2 + 6x - x - 6)(x^2 + 3x + 2x + 6)
D = [(x^2 + 5x) - 6].[(x^2 + 5x) + 6]
D = (x^2 + 5x)^2 - 6^2 \(\ge\)-(6^2)
D = (x^2 + 5x)^2 + (-36) \(\ge\)-36
=> DMin = -36 đạt được khi x^2 + 5x = 0 <=> x(x+5) = 0 <=> x = 0 hoặc -5
![](https://rs.olm.vn/images/avt/0.png?1311)
x^2 + 6x +11
=x2+6x+9+2
=(x+3)2+2\(\ge\)2 ( vì (x+3)2\(\ge\)0 )
dấu = xảy ra khi:
x+3=0
x=-3
vậy GTNN của x^2 + 6x +11 là 2 tại x=-3
\(x^2+2.3.x+9+2\)
=\(\left(x+3\right)^2+2\)
do \(\left(x+3\right)^2>=0\)
nen \(\left(x+3\right)^2+2>=2\)
vậy gtnn của biểu thức là 2 tại x=-3
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=x^2-6x+11\)
\(A=\left(x^2-2.x.3+3^2\right)+2\)
Mà : \(\left(x+3\right)^2\ge0\)
\(\left(x+3\right)^2+2\ge2\)
Vậy GTNN là 2
Khi x + 3 = 0
x = 3
\(x^2+6x+13\)
\(=x^2+6x+9+4\)
\(=\left(x+3\right)^2+4\)
Ta có: ( x + 3 )2 > 0 => ( x + 3)2 + 4 > 4
=>\(\left(x+3\right)^2+4\)có giá trị nhỏ nhất bằng 4
<=> \(\left(x+3\right)^2+4=4\)
<=>\(\left(x+3\right)^2=0\)
<=>\(x+3=0\) => \(x=3\)
Vậy \(x^2+6x+13\) có giá trị nhỏ nhất bằng \(4\)<=>\(x=3\)