Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(x-2\right)^2\ge0\forall x\)
nên Dấu '=' xảy ra khi x-2=0
hay x=2
Vậy: Gtnn của biểu thức \(\left(x-2\right)^2\) là 0 khi x=2
\(E=\left(2x-5\right)^{10}-12\ge-12\forall x\)
Dấu '=' xảy ra khi x=5/2
a,Ta thấy \(x^2\ge0\) \(\left(\forall x\right)\)
\(\Rightarrow x^2+2015\ge2015\)
Dấu "=" xảy ra \(\Leftrightarrow x^2=0\)\(\Rightarrow x=0\)
Vậy Min \(x^2+2015=2015\)\(\Leftrightarrow x=0\)
b, Ta thấy \(\left(1-2x\right)^2\ge0\)\(\left(\forall x\right)\)
\(\Rightarrow\left(1-2x\right)^2-12\ge-12\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(1-2x\right)^2=0\)\(\Rightarrow1-2x=0\)\(\Rightarrow2x=0\Rightarrow x=0\)
Vậy Min \(\left(1-2x\right)^2-12=12\Leftrightarrow x=0\)
1) Xét rằng x > 7 <=> A < 0
Lại xét x < 7 thì mẫu là một số nguyên dương. P/s A có tử và mẫu đều là số dương, mà tử lại bất biến
A(max) <=> mẫu 7 - x nhỏ nhất <=> 7 - x = 1 => x = 7 - 1 = 6 <=> A = 1
Từ những điều trên thì A sẽ có GTLN khi và chỉ khi x = 6
a)Ta có: \(x^2\ge0\Rightarrow x^2+3\ge3\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy \(A_{Min}=3 khi x=0\)
b) \(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2-5\ge-5\)
Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy \(B_{Min}=-5khix=-\dfrac{1}{2}\)
c) \(\left(2x-1\right)^{2008}\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)
\(\left(3y-2\right)^{2008}\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow y=\dfrac{2}{3}\)
\(\Rightarrow\left(2x-1\right)^{2008}+\left(3y-2\right)^{2008}\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(C_{Min}=0khix=\dfrac{1}{2}vày=\dfrac{2}{3}\)
a) |x+3/4| >/ 0
|x+3/4| + 1/2 >/ 1/2
MinA= 1/2 <=> x+3/4 =0 hay x= -3/4
b) 2|2x-4/3| >/ 0
2|2x-4/3| -1 >/ -1
MinB = -1 <=> 2|2x-4/3| = 0 hay x=2/3
Bài tiếp théo:
a) -2|x+4| \< 0
-2|x+4| +1 \< 1
MaxA=1 <=> -2|x+4| = 0 hay = -4
b) -3|x-5| \< 0
-3|x-5| + 11/4 \< 11/4
MaxB=11/4 <=> -3|x-5| = 0 hay x=-5
vì \(\left(2x-1\right)^2\ge0\forall x\in Q\)
=>\(\left(2x+1\right)^2+12\ge12\)
dấu = xảy ra <=>
2x+1=0
2x=1
x=\(\frac{1}{2}\)
vậy gtnn của bt A tại X = 1/2
\(A=\left(2x-1\right)^2+12\ge0\)
\(A=\left(2x-1\right)^2+12\ge12\)
\(\Leftrightarrow A=12\)
Dấu "=" xảy ra: \(\left(2x-1\right)^2=0\)
\(2x-1=0\)
\(x=\frac{1}{2}\)