K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2016

Bài này cô cũng nghĩ là dùng phương pháp toa độ, chuyển qua hình học giải tích Oxy để giải.

Cô làm như sau:

Từ biểu thức P ta nghĩ đến công thức tính khoảng cách giữa hai điểm. Từ đó ta đặt \(A\left(-1;1\right);B\left(1;-1\right);C\left(-2;-2\right)\) và \(D\left(x;y\right)\). Khi đó ta thấy ngay \(P\left(x;y\right)=DA+DB+DC\)

Ta vẽ các điểm trên trục tọa độ:

?o?n th?ng f: ?o?n th?ng [A, C] ?o?n th?ng g: ?o?n th?ng [A, B] ?o?n th?ng h: ?o?n th?ng [C, B] ?o?n th?ng i: ?o?n th?ng [C, O] ?o?n th?ng j: ?o?n th?ng [A, D] ?o?n th?ng k: ?o?n th?ng [D, B] A = (-1, 1) A = (-1, 1) A = (-1, 1) B = (1.06, -1.14) B = (1.06, -1.14) B = (1.06, -1.14) C = (-2, -2) C = (-2, -2) C = (-2, -2) ?i?m O: Giao ?i?m c?a g, TrucHoanh ?i?m O: Giao ?i?m c?a g, TrucHoanh ?i?m O: Giao ?i?m c?a g, TrucHoanh ?i?m D: ?i?m tr�n i ?i?m D: ?i?m tr�n i ?i?m D: ?i?m tr�n i

Vậy điểm D cần tìm là điểm tạo với các cạnh tam giác góc 120o. (Để hiểu rõ thêm e có thể đọc về điểm Toricenli của tam giác ABC). Do tam giác ABC cân tại C nên D thuộc CO, nói cách khác xD = yD.

Do \(\widehat{ADB}=120^o\Rightarrow\widehat{ADO}=60^o.\) Vậy thì \(tan60^o=\sqrt{3}=\frac{OA}{DO}\)

Do \(OA=\sqrt{2}\Rightarrow DO=\frac{\sqrt{2}}{\sqrt{3}}=\sqrt{\frac{2}{3}}\)

Vậy \(\sqrt{x_D^2+y_D^2}=\sqrt{2y_D^2}=\sqrt{\frac{2}{3}}\Rightarrow\left|x_D\right|=\left|y_D\right|=\frac{1}{\sqrt{3}}\). Từ hình vẽ ta có:  \(x_D=y_D=-\frac{1}{\sqrt{3}}.\)

Vậy \(P\left(x;y\right)=DA+DB+DC=\sqrt{\left(-\frac{1}{\sqrt{3}}+1\right)^2+\left(-\frac{1}{\sqrt{3}}-1\right)^2}\)

\(+\sqrt{\left(-\frac{1}{\sqrt{3}}-1\right)^2+\left(-\frac{1}{\sqrt{3}}+1\right)^2}+\sqrt{\left(-\frac{1}{\sqrt{3}}+2\right)^2+\left(-\frac{1}{\sqrt{3}}+2\right)^2}\)

\(=\sqrt{6}+2\sqrt{2}.\)

Vậy min P(x;y) = \(\sqrt{6}+2\sqrt{2}\) khi \(x=y=-\frac{1}{\sqrt{3}}.\)

8 tháng 11 2016

Sử dụng HÌNH HỌC GIẢI TÍCH OXY