K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2019

Bằng bước biến đổi \(P=\frac{\left(x+y\right)^2+xy}{\sqrt{xy}.\left(x+y\right)}\)ta có cách giải sau

Áp dụng Bất đẳng thức AM-GM,ta có: \(P=\frac{\left(x+y\right)^2+xy}{\sqrt{xy}.\left(x+y\right)}\ge\frac{2\sqrt{xy}\left(x+y\right)}{\sqrt{xy}\left(x+y\right)}=2\)

Vậy giá trị nhỏ nhất của P là 2 đạt được khi \(\left(x+y\right)^2=xy\Leftrightarrow x^2+xy+y^2=0\)

Cơ mà nếu vậy thì P không có giá trị nhỏ nhất à, hay là em làm sai

 
 

9 tháng 9 2019

Đổi tên biểu thức thành M cho nó đỡ nhầm lẫn với cách phần đặt biến phụ nha!

Biểu thức đối xứng 2 biến x, y là em nghĩ đến cách đặt \(S=x+y;P=xy\Rightarrow S^2\ge4P\).(đẳng thức xảy ra khi x = y)

Có: \(M=\frac{S^2+P}{S\sqrt{P}}=\frac{S}{\sqrt{P}}+\frac{\sqrt{P}}{S}\). Đặt \(t=\frac{S}{\sqrt{P}}=\sqrt{\frac{S^2}{P}}\ge\sqrt{\frac{4P}{P}}=2\). Quy về tìm min biểu thức:

\(M=t+\frac{1}{t}\left(t\ge2\right)\). Đến đây có 2 cách:

+) Cách 1: \(t+\frac{1}{t}=\frac{t}{4}+\frac{1}{t}+\frac{3t}{4}\ge2\sqrt{\frac{t}{4}.\frac{1}{t}}+\frac{3.2}{4}=\frac{5}{2}\)

Đẳng thức xảy  ra khi ... (anh tự giải nhá:3)

+) Cách 2: \(t+\frac{1}{t}=t+\frac{4}{t}-\frac{3}{t}\ge2\sqrt{t.\frac{4}{t}}-\frac{3}{2}=\frac{5}{2}\)

Vậy...

20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?

18 tháng 12 2016

Lời giải phía trên sai rồi. Biểu thức (mình đặt là A) sẽ bằng \(\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\)

Ta biển đổi \(A=\frac{1}{4}.\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}+\frac{3}{4}.\frac{x^2+y^2}{xy}\)

Thực hiện BĐT Cauchy 2 lượng đầu, lượng cuối cùng dùng BĐT \(x^2+y^2\ge2xy\)

Vậy giá trị nhỏ nhất là \(\frac{5}{2}\)

18 tháng 12 2016

Bài này thiếu điều kiện x,y > 0. Nếu có điều kiện thì quy đồng \(\frac{x}{y}+\frac{y}{x}=\frac{x^2+y^2}{xy}\) rồi áp dụng bất đẳng thức Cô-si được A \(\ge\)2

27 tháng 2 2020

\(B=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+y}\)

Áp dụng BĐT cô si:

\(\frac{x^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{x^2}{x+y}.\frac{x+y}{4}}=x\)

CMTT: \(\frac{y^2}{y+z}+\frac{y+z}{4}\ge y\)

         \(\frac{z^2}{x+z}+\frac{x+z}{4}\ge z\)

Cộng vế với vế ta được:

\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+z}+\frac{x+y}{4}+\frac{y+z}{4}+\frac{x+z}{4}\ge x+y+z\)

\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+z}\ge4-\frac{2.\left(x+y+z\right)}{4}=4-2=2\)

           \(B\ge2\)

Dấu = xảy ra \(\Leftrightarrow x=y=z=\frac{4}{3}\)

27 tháng 2 2020

sờ vác xơ

\(B=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

\(\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}\)

\(=2\)

Dấu "=" xảy ra tại \(x=y=z=\frac{4}{3}\)

16 tháng 3 2021

\(Q=\frac{x^3}{4\left(y+2\right)}+\frac{y^3}{4\left(x+2\right)}=\frac{x^3\left(x+2\right)}{4\left(x+2\right)\left(y+2\right)}+\frac{y^3\left(y+2\right)}{4\left(x+2\right)\left(y+2\right)}\)

\(=\frac{x^4+y^4+2x^3+2y^3}{4\left(x+2\right)\left(y+2\right)}=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(xy+2x+2y+4\right)}\)

\(=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(2x+2y+8\right)}=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\)

Áp dụng bất đẳng thức AM-GM ta có :

\(x^4+y^4\ge2\sqrt{x^4y^4}=2x^2y^2\)

\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)

\(Q=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\ge\frac{2x^2y^2+2xy\left(x+y\right)}{8\left(x+y+4\right)}=\frac{2xy\left(xy+x+y\right)}{8\left(x+y+4\right)}=\frac{8\left(x+y+4\right)}{8\left(x+y+4\right)}=1\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x,y>0\\x=y\\xy=4\end{cases}}\Rightarrow x=y=2\)

Vậy GTNN của Q là 1 <=> x = y = 2

17 tháng 3 2021

Or

\(Q-1=\frac{\left(x^2-y^2\right)^2+2\left(x+y\right)\left(x^2+y^2-8\right)}{4\left(x+2\right)\left(y+2\right)}\ge0\)*đúng do \(x^2+y^2\ge2xy=8\)*

Do đó \(Q\ge1\)

Đẳng thức xảy ra khi x = y = 2

4 tháng 2 2019

Áp dụng BĐT Minicopski ta có:

\(T=\sqrt{x^4+\frac{1}{x^4}}+\sqrt{y^2+\frac{1}{y^2}}\ge\sqrt{\left(x^2+y\right)^2+\left(\frac{1}{x^2}+\frac{1}{y}\right)^2}\)

\(\ge\sqrt{1^2+\left(\frac{4}{x^2+y}\right)^2}=\sqrt{1+\left(\frac{4}{1}\right)^2}=\sqrt{17}\)

Nên GTNN của T là \(\sqrt{17}\) khi \(\hept{\begin{cases}x=\sqrt{\frac{1}{2}}\\y=\frac{1}{2}\end{cases}}\)