Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{x^2+x+1}{x^2+2x+2}\Leftrightarrow Px^2+2x.P+2P=x^2+x+1\)
\(\Leftrightarrow\left(P-1\right)x^2+\left(2P-1\right)x+\left(2P-1\right)=0\)
Xét P = 1 thì x = -1
Xét P khác 1 thì \(\Delta=\left(2P-1\right)^2-4\left(P-1\right)\left(2P-1\right)\ge0\)
\(\Leftrightarrow-4P^2+8P-3\ge0\Leftrightarrow\frac{1}{2}\le P\le\frac{3}{2}\)
GTNN :\(A=\frac{\left(2x^2+2\right)+\left(x^2-2x+1\right)}{x^2+1}=2+\frac{\left(x-1\right)^2}{x^2+1}\ge2\forall x\) có GTNN là 2
GTLN : \(A=\frac{\left(4x^2+4\right)-\left(x^2+2x+1\right)}{x^2+1}=4-\frac{\left(x+1\right)^2}{x^2+1}\le4\forall x\) có GTLN là 4
Dùng miền giá trị nha ah!Nếu sai em không trịu trách nhiệm đâu nha,em mới lớp 7 thôi.
Từ đề bài nhân chéo lên và chuyển vế suy ra: \(\left(A-1\right)x^2+2\left(A+1\right)x+2\left(A-1\right)=0\) (1)
Với A = 1 thì x = 0
Với A khác 1 thì (1) là pt bậc 2.Do (1) luôn có nghiệm nên: \(\Delta'=\left(A+1\right)^2-2\left(A-1\right)^2\ge0\)
\(\Leftrightarrow-A^2+6A-1\ge0\Leftrightarrow3-2\sqrt{2}\le A\le3+2\sqrt{2}\)
Vậy ....
\(D=\sqrt{\left(x+\sqrt{3}\right)^2}+\sqrt{\left(x-\frac{1}{2}\right)^2}\)
\(D=|x+\sqrt{3}|+|x-\frac{1}{2}|=|x+\sqrt{3}|+|\frac{1}{2}-x|\ge|x+\sqrt{3}+\frac{1}{2}-x|\)
=sqrt(3)+1/2.
Vậy giá trị nhỏ nhất cần tìm là: sqrt(3)+1/2. Dấu bằng thì bạn tham khảo bất đẳng thức:
lal+lbl geq la+bl
a) Ta có \(Q=\frac{x-9}{\sqrt{x}+3}+\frac{25}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}-6\)
Áp dụng BĐT cô-si, ta có \(\sqrt{x}+3+\frac{25}{\sqrt{x}+3}\ge10\Rightarrow Q\ge10-6=4\)
Dấu = xảy ra <=> x=4
b)Tá có \(M=x^2+4y^2+1+4xy+2x+2y+y^2-2y+1+10\)
=\(\left(x+2y+1\right)^2+\left(y-1\right)^2+10\ge10\)
dấu = xảy ra <=> y=1 và x=-3
^_^
1988/1989 mới đúng chứ.