\(x^2+x+3\) + giá trị tuyệt đ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2016

Bài 2: Áp dụng \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

\(\left|x^2+x+3\right|+\left|-x^2-x+6\right|\ge\left|x^2+x+3-x^2-x+6\right|=\left|9\right|=9\)

Bài 1

Ta có (a-b)2 >=0

=) a2 + b2 >= 2ab

Cộng 2 vế BĐT cho  a2 + bta được:

a2 + b2 + a2 + b2 >= a2 + b2 +2ab

=) 2( a2 + b2 ) >=  ( a + b)2

=)  a2 + b>=  ( a + b)2/2

Nhân 2 vế BĐT cho 1/2 ta được

a2 + b2 /2 >= ( a + b)2/4

Hay a2 + b2 /2 >= (a+b/2)2

Dấu '=' XRK : a=b

11 tháng 4 2018
a,(3x-2):4>=(3x+3):6 <=>(18x-12):24>=(12x+12):24 <=>18x-12>=12x+12 <=>6x>=24 <=> 6x:6>=24:6 <=> X>=4 Vậy tập n là {x/x>=4}
5 tháng 6 2020

a) Để giá trị biểu thức 5 – 2x là số dương

<=> 5 – 2x > 0

<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )

\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )

Vậy : \(x< \frac{5}{2}\)

b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:

x + 3 < 4x – 5

<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )

<=> -3x < -8

\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).

Vậy : \(x>\frac{8}{3}\)

c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:

2x + 1 ≥ x + 3

<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).

<=> x ≥ 2.

Vậy x ≥ 2.

d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:

x2 + 1 ≤ (x – 2)2

<=> x2 + 1 ≤ x2 – 4x + 4

<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).

<=> 4x ≤ 3

 \(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )

Vậy : \(x\le\frac{3}{4}\)

22 tháng 4 2017

Giải bài 43 trang 53 SGK Toán 8 Tập 2 | Giải toán lớp 8

19 tháng 12 2018

a, ĐKXĐ: x khác -2 và 2

b, nếu \(x\ge1\) thì x=1(TMĐK)\

thay vào A =-1

nếu x<1 thì x=-2 (KTMĐK)

19 tháng 12 2018

Sửa đề tí:

\(A=\frac{3}{x-2}-\frac{3}{x+2}+\frac{3x^2}{x^2-4}\)

ĐKXD: x khác 2 và -2

\(A=\frac{3}{x-2}-\frac{3}{x+2}+\frac{3x^2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{3x+6}{\left(x-2\right)\left(x+2\right)}-\frac{3x-6}{\left(x-2\right)\left(x+2\right)}+\frac{3x^2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{12+3x^2}{\left(x-2\right)\left(x+2\right)}\)

\(|x|+1=1\Leftrightarrow x=0\)

\(A=\frac{12+0}{\left(-2\right)\left(2\right)}=\frac{12}{-4}=-3\)