Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: Áp dụng \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(\left|x^2+x+3\right|+\left|-x^2-x+6\right|\ge\left|x^2+x+3-x^2-x+6\right|=\left|9\right|=9\)
Bài 1
Ta có (a-b)2 >=0
=) a2 + b2 >= 2ab
Cộng 2 vế BĐT cho a2 + b2 ta được:
a2 + b2 + a2 + b2 >= a2 + b2 +2ab
=) 2( a2 + b2 ) >= ( a + b)2
=) a2 + b2 >= ( a + b)2/2
Nhân 2 vế BĐT cho 1/2 ta được
a2 + b2 /2 >= ( a + b)2/4
Hay a2 + b2 /2 >= (a+b/2)2
Dấu '=' XRK : a=b
a) Để giá trị biểu thức 5 – 2x là số dương
<=> 5 – 2x > 0
<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )
\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )
Vậy : \(x< \frac{5}{2}\)
b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:
x + 3 < 4x – 5
<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )
<=> -3x < -8
\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).
Vậy : \(x>\frac{8}{3}\)
c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:
2x + 1 ≥ x + 3
<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).
<=> x ≥ 2.
Vậy x ≥ 2.
d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:
x2 + 1 ≤ (x – 2)2
<=> x2 + 1 ≤ x2 – 4x + 4
<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).
<=> 4x ≤ 3
\(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )
Vậy : \(x\le\frac{3}{4}\)
a, ĐKXĐ: x khác -2 và 2
b, nếu \(x\ge1\) thì x=1(TMĐK)\
thay vào A =-1
nếu x<1 thì x=-2 (KTMĐK)
Sửa đề tí:
\(A=\frac{3}{x-2}-\frac{3}{x+2}+\frac{3x^2}{x^2-4}\)
ĐKXD: x khác 2 và -2
\(A=\frac{3}{x-2}-\frac{3}{x+2}+\frac{3x^2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{3x+6}{\left(x-2\right)\left(x+2\right)}-\frac{3x-6}{\left(x-2\right)\left(x+2\right)}+\frac{3x^2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{12+3x^2}{\left(x-2\right)\left(x+2\right)}\)
\(|x|+1=1\Leftrightarrow x=0\)
\(A=\frac{12+0}{\left(-2\right)\left(2\right)}=\frac{12}{-4}=-3\)