K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2015

\(B=\frac{2001}{2}\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right].\left[\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right]\)

\(B=\frac{2001}{2}\left[\frac{a+b}{a+b}+\frac{a+b}{b+c}+\frac{a+b}{c+a}+\frac{b+c}{a+b}+\frac{b+c}{b+c}+\frac{b+c}{c+a}+\frac{c+a}{a+b}+\frac{c+a}{b+c}+\frac{c+a}{c+a}\right]\)

\(B=\frac{2001}{2}\left[1+\left(\frac{a+b}{b+c}+\frac{b+c}{a+b}\right)+\left(\frac{a+b}{c+a}+\frac{c+a}{a+b}\right)+1+\left(\frac{b+c}{c+a}+\frac{c+a}{b+c}\right)+1\right]\)

Dễ dàng chứng minh được \(\frac{x}{y}+\frac{y}{x}\ge2\). Suy ra:

\(\left(\frac{a+b}{b+c}+\frac{b+c}{a+b}\right)\ge2\)\(\left(\frac{a+b}{c+a}+\frac{c+a}{a+b}\right)\ge2\)\(\left(\frac{b+c}{c+a}+\frac{c+a}{b+c}\right)\ge2\)

=> \(B\ge\frac{2001}{2}.\left(3+2+2+2\right)=\frac{18009}{2}\)

Dấu = khi và chỉ khi \(\frac{a+b}{b+c}=\frac{b+c}{a+b}=\frac{c+a}{b+c}\Rightarrow a=b=c\)

vậy Min B = 18009/2

 

 

3 tháng 4 2021

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)

=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

=> \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

=> \(\frac{a+b}{ab}=\frac{-\left(a+b\right)}{\left(a+b+c\right).c}\)

Khi a + b = 0

=> (a + b)(b + c)(c + a) = 0 (2)

Nếu a + b \(\ne0\)

=> ab = -(a + b + c).c

=> ab + (a + b + c).c = 0

=> ab + ac + bc + c2 = 0

=> (a + c)(b + c) = 0

=> (a + b)(b + c)(a + c) = 0 (1)

Từ (2)(1) => (a + b)(b + c)(a + c) = 0 \(\forall a;b;c\)

=> a = -b hoặc b = -c hoặc = c = -a

Nếu a = -b => a11 = -b11 => a11 + b11 = 0

=> P = 0 (3)

Nếu b = -c => b9 = - c9 => b9 + c9 = 0

=>P = 0 (4)

Nếu c = -a => c2001 = -a2001 => c2001 + a2001 = 0

=> P = 0 (5)

Từ (3);(4);(5) => P = 0 trong cả 3 trường hợp 

Vạy P = 0

3 tháng 4 2021

Xyz là ad ak?

16 tháng 7 2016

2) Ta có :  \(\left|x-1\right|+\left|1-x\right|=2\) (1)

Xét 3 trường hợp : 

1. Với \(x>1\) , phương trình (1) trở thành : \(x-1+x-1=2\Leftrightarrow2x=4\Leftrightarrow x=2\) (thoả mãn)

2. Với \(x< 1\), phương trình (1) trở thành : \(1-x+1-x=2\Leftrightarrow2x=0\Leftrightarrow x=0\)(thoả mãn)

3. Với x = 1 , phương trình vô nghiệm.

Vậy tập nghiệm của phương trình : \(S=\left\{0;2\right\}\)

16 tháng 7 2016

1) Cách 1:

Ta có ; \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)

Mặt khác theo bất đẳng thức Cauchy :\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\) ;\(\frac{b}{c}+\frac{c}{b}\ge2\) ; \(\frac{c}{a}+\frac{a}{c}\ge2\)

\(\Rightarrow A\ge1+2+2+2=9\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{a}\\\frac{b}{c}=\frac{c}{b}\\\frac{a}{c}=\frac{c}{a}\end{cases}}\)\(\Leftrightarrow a=b=c\)

Vậy Min A = 9 <=> a = b = c

Cách 2 : Sử dụng bđt Bunhiacopxki : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(1+1+1\right)^2=9\)

21 tháng 3 2021

Dễ dàng chứng minh được: 

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với \(x,y>0\)(1)

Dấu bằng xảy ra \(\Leftrightarrow x=y>0\)

Ta có:

\(\frac{a}{bc\left(a+1\right)}=\frac{a}{abc+bc}=\frac{a}{ab+bc+ca+bc}=\frac{a}{\left(ab+bc\right)+\left(bc+ca\right)}\)

Áp dụng (1), ta được:

\(\frac{1}{ab+bc}+\frac{1}{bc+ca}\ge\frac{4}{\left(ab+bc\right)+\left(bc+ca\right)}\)

\(\Leftrightarrow\frac{1}{4\left(ab+bc\right)}+\frac{1}{4\left(bc+ca\right)}\ge\frac{1}{ab+bc+bc+ca}\)

\(\Leftrightarrow\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ca}\right)\ge\frac{a}{ab+bc+bc+ca}\)

\(\Leftrightarrow\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ca}\right)\ge\frac{a}{bc\left(a+1\right)}\left(2\right)\)

Dấu bằng xảy ra \(\Leftrightarrow b=c>0\)

Chúng minh tương tự, ta được:

\(\frac{b}{4}\left(\frac{1}{ab+ca}+\frac{1}{bc+ca}\right)\ge\frac{b}{ca\left(b+1\right)}\left(3\right)\)

Dấu bằng xảu ra \(\Leftrightarrow a=c>0\).

\(\frac{c}{4}\left(\frac{1}{ac+ab}+\frac{1}{ab+bc}\right)\ge\frac{c}{ab\left(c+1\right)}\left(4\right)\)

Từ (2), (3) và (4), ta được:

\(\frac{a}{bc\left(a+1\right)}+\frac{b}{ca\left(b+1\right)}+\frac{c}{ab\left(c+1\right)}\le\)\(\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ac}\right)+\frac{b}{4}\left(\frac{1}{ac+bc}+\frac{1}{ac+ab}\right)\)\(+\frac{c}{4}\left(\frac{1}{ab+bc}+\frac{1}{ab+ac}\right)\)

\(\Leftrightarrow P\le\frac{1}{4}.\left(\frac{a}{ab+bc}+\frac{c}{ab+bc}\right)+\frac{1}{4}\left(\frac{a}{bc+ac}+\frac{b}{bc+ac}\right)\)\(+\frac{1}{4}\left(\frac{b}{ab+ac}+\frac{c}{ab+ac}\right)\)

\(\Leftrightarrow P\le\frac{a+c}{4\left(ab+bc\right)}+\frac{a+b}{4\left(bc+ac\right)}+\frac{b+c}{4\left(ab+ac\right)}\)

\(\Leftrightarrow P\le\frac{a+c}{4b\left(a+c\right)}+\frac{a+b}{4c\left(a+b\right)}+\frac{b+c}{4a\left(b+c\right)}\)

\(\Leftrightarrow P\le\frac{1}{4b}+\frac{1}{4c}+\frac{1}{4a}\)

\(\Leftrightarrow P\le\frac{1}{4}\left(\frac{ab+bc+ca}{abc}\right)\)

\(\Leftrightarrow P\le\frac{1}{4}.\frac{abc}{abc}=\frac{1}{4}.1=\frac{1}{4}\)( vì \(ab+bc+ca=abc\))

Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\ab+bc+ca=abc\end{cases}}\Leftrightarrow a=b=c=3\)

Vậy \(minP=\frac{1}{4}\Leftrightarrow a=b=c=3\)

11 tháng 9 2016

Khai triển của biểu thức trên là:

P=\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

  =\(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

  =\(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Mặt khác: \(\frac{x}{y}+\frac{y}{x}\ge2\)với mọi x,y dương \(\Rightarrow\frac{P}{3+2+2+2}=9\)

Vậy \(P_{min}=9\Leftrightarrow a=b=c\)

7 tháng 2 2019

GTNN là 9 (BĐT AM-GM)

Ta có : \(P=a+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Mặt khác \(\frac{x}{y}+\frac{y}{x}\ge2\)Với mọi \(x,y\)dương \(\Rightarrow P=3+2+2+2=9\)

Vậy \(Pmir=9\)khi \(a=b=c\)

25 tháng 2 2021

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{c+a+b}=1\)

Do đó: \(\frac{a+b-c}{c}=1\)\(\Rightarrow a+b-c=c\)\(\Rightarrow a+b+c=3c\)  (1)

\(\frac{b+c-a}{a}=1\)\(\Rightarrow b+c-a=a\)\(\Rightarrow b+c+a=3a\) (2)

\(\frac{a+c-b}{b}=1\)\(\Rightarrow a+c-b=b\)\(\Rightarrow a+c+b=3b\) (3)

Từ (1), (2), (3) \(\Rightarrow3a=3b=3c\)\(\Rightarrow a=b=c\)

Ta có: \(T=\left(10+\frac{b}{a}\right)\left(4+\frac{2c}{b}\right)\left(2017+\frac{3a}{c}\right)\)

\(=\left(10+\frac{a}{a}\right)\left(4+\frac{2c}{c}\right)\left(2017+\frac{3a}{a}\right)\)

\(=\left(10+1\right)\left(4+2\right)\left(2017+3\right)\)

\(=11.6.2020=133320\)

p/s: làm thế này đúng không ta, mình hong chắc lắm