Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)
=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
=> \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
=> \(\frac{a+b}{ab}=\frac{-\left(a+b\right)}{\left(a+b+c\right).c}\)
Khi a + b = 0
=> (a + b)(b + c)(c + a) = 0 (2)
Nếu a + b \(\ne0\)
=> ab = -(a + b + c).c
=> ab + (a + b + c).c = 0
=> ab + ac + bc + c2 = 0
=> (a + c)(b + c) = 0
=> (a + b)(b + c)(a + c) = 0 (1)
Từ (2)(1) => (a + b)(b + c)(a + c) = 0 \(\forall a;b;c\)
=> a = -b hoặc b = -c hoặc = c = -a
Nếu a = -b => a11 = -b11 => a11 + b11 = 0
=> P = 0 (3)
Nếu b = -c => b9 = - c9 => b9 + c9 = 0
=>P = 0 (4)
Nếu c = -a => c2001 = -a2001 => c2001 + a2001 = 0
=> P = 0 (5)
Từ (3);(4);(5) => P = 0 trong cả 3 trường hợp
Vạy P = 0
a) 9x2 - 36
=(3x)2-62
=(3x-6)(3x+6)
=4(x-3)(x+3)
b) 2x3y-4x2y2+2xy3
=2xy(x2-2xy+y2)
=2xy(x-y)2
c) ab - b2-a+b
=ab-a-b2+b
=(ab-a)-(b2-b)
=a(b-1)-b(b-1)
=(b-1)(a-b)
P/s đùng để ý đến câu trả lời của mình
dễ!Ta có:
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a+a-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a}{\left(a-b\right)\left(a-c\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}+\frac{1}{c-a}\)
Chứng minh tương tự,Ta được:
\(\hept{\begin{cases}\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{a-b}+\frac{1}{b-c}\\\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}+\frac{1}{b-c}\end{cases}}\)
\(\Rightarrow\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-a\right)\left(b-c\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2013\)\(\Rightarrow\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}=\frac{2013}{2}\)
Xong!
a) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)
\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
- TH1: Nếu a + b + c = 0 \(\Rightarrow P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)
- TH2 : Nếu \(a+b+c\ne0\) \(\Rightarrow a=b=c\)
\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
b) Đề bài sai ^^
Bài làm
Ta có : a3 + b3 + c3 = 3abc
<=> ( a3 + b3 ) + c3 - 3abc = 0
<=> ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0
<=> [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0
<=> ( a + b + c )[ ( a + b )2 - ( a + b )c + c2 ] - 3ab( a + b + c ) = 0
<=> ( a + b + c )( a2 + 2ab + b2 - ac - bc + c2 - 3ab ) = 0
<=> ( a + b + c )( a2 + b2 + c2 - ab - bc - ac ) = 0
<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{cases}}\)
Vì a, b, c dương => a + b + c > 0 => a + b + c = 0 vô lí
Xét a2 + b2 + c2 - ab - bc - ac = 0
<=> 2( a2 + b2 + c2 - ab - bc - ac ) = 2.0
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0
<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( a2 - 2ac + c2 ) = 0
<=> ( a - b )2 + ( b - c )2 + ( a - c )2 = 0
VT ≥ 0 ∀ a,b,c . Đẳng thức xảy ra <=> \(\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\a=c\end{cases}}\Leftrightarrow a=b=c\)
=> \(P=\left(\frac{a}{b}-1\right)+\left(\frac{b}{c}-1\right)+\left(\frac{c}{a}-1\right)=\left(\frac{a}{a}-1\right)+\left(\frac{b}{b}-1\right)+\left(\frac{c}{c}-1\right)\)
\(=\left(1-1\right)+\left(1-1\right)+\left(1-1\right)\)
\(=0\)
Do \(a,b,c\) là các số dương suy ra:
\(a>0;b>0;c>0\)
Suy ra: \(a+b+c>0\)
Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2-3ab\left(a+b+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Rightarrow a+b+c=0\) hoặc \(a^2+b^2+c^2-ab-bc-ca=0\)
Do \(a+b+c>0\)
Suy ra: \(a^2+b^2+c^2-ab-bc-ca=0\)
\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Suy ra: \(a-b=0;b-c=0\) và \(c-a=0\)
Suy ra: \(a=b=c\)
Suy ra: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\)
Ta có: \(\left(\frac{a}{b}-1\right)+\left(\frac{b}{c}-1\right)+\left(\frac{c}{a}-1\right)=\left(1-1\right)+\left(1-1\right)+\left(1-1\right)=0\)
Vậy ...
Sau khi giải bài này xong mình cảm thấy hoa mắt và chóng mặt, mong GP sẽ gấp đôi :)
Méo bt trẩu là gì à =))
Bảo ezzz thì chỉ hộ cách làm ko bt thì đừng cư xử như 1 đứa trẻ trâu=))