Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nãy lộn nhé,em làm lại:
\(D=\left(x^2+4xy+2x+4y^2+4y+1\right)+x^2+8\)
\(=\left[x^2+2x\left(2y+1\right)+\left(2y+1\right)^2\right]+x^2+8\)
\(=\left(x+2y+1\right)^2+x^2+8\ge8\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2=0\\x+2y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-\frac{1}{2}\end{cases}}\)
Dạng này mình không quen cho lắm nên không chắc nha!
\(D=\left(x^2+4xy+2x+4y^2+4y+1\right)+8\)
\(=\left[x^2+2x\left(2y+1\right)+\left(2y+1\right)\right]+8\)
\(=\left(x+2y+1\right)^2+8\ge8\)
Dấu "=" xảy ra khi \(\left(x+2y+1\right)^2=0\Leftrightarrow2y+1=-x\)
Mà \(\left(x+2y+1\right)^2=x^2+2x\left(2y+1\right)+\left(2y+1\right)\)
\(=x^2-2x^2-x=-x^2-x=0\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Thay vào D loại x = -1 suy ra x = 0 tức là y = -1/2
Để mik suy nghĩ đã sau đó mik trả lời giúp bạn nhé!
\(x^2-4xy+4y^2+3x^2-2x+\frac{1}{3}-\frac{1}{3}\\ =\left(x-2y\right)^2+3\left(x-\frac{1}{3}\right)^2-\frac{1}{3}\ge-\frac{1}{3}\)
khi \(x=\frac{1}{3},y=\frac{1}{6}\)
\(A=x^2+2xy+2y^2+2x-4y+2013\)
\(=\left(x^2+y^2+1+2x+2y+2xy\right)-1-2y+y^2-4y+2013\)\(=\left(x+y+1\right)^2+\left(y^2-2.y.3+9\right)-9+2012\)
\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2003\)
mà \(\left(x+y+1\right)^2,\left(y-3\right)^2\ge0\)
\(\Rightarrow A=x^2+2xy+2y^2+2x-4y+2013=\left(x+y+1\right)^2+\left(y-3\right)^2+2003\ge2003\)
\(\Rightarrow Min\left(A\right)=2003\)
\(Q=x^2-2x+2y^2+4y+8\)
\(Q=\left(x^2-2x+1\right)+2\left(y^2+2y+1\right)+5\)
\(Q=\left(x-1\right)^2+2\left(y+1\right)^2+5\)
Mà \(\left(x-1\right)^2\ge0\forall x\)
\(\left(y+1\right)^2\ge0\forall y\Rightarrow2\left(y+1\right)^2\ge0\forall y\)
\(\Rightarrow Q\ge5\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-1=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\)
Vậy ...
biet tong cua so thu nhat va so thu hai bang 5,8.Tong cua so thu hai va so thu ba bang 6,7.Tong so thu nhat va so thu ba bang 7,5.Tim moi so do?
Ta có:
\(C=2x^2+3y^2+4xy-8x-2y+18\)
\(C=2\left(x^2+2xy+y^2\right)+y^2-8x-2y+18\)
\(C=2[\left(x+y\right)^2-4\left(x+y\right)+4]+\left(y^2+6y+9\right)+1\)
\(C=2\left(x+y-2\right)^2+\left(y+3\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow x+y=2\)và \(y=-3\)
Hay x = 5 , y = -3
C= 2x2 + 4y2 + 4xy - 3x -1
= (x2 + 4xy + 4y2) + (x2 - 3x + 9/4) - 13/4
= (x+2y)2 + (x-3/2)2 - 13/4
vì (x+2y)2 >=0
(x-3/2)2 >=0
=) MinC= -13/4 (dấu '=' xảy ra khi x=3/2 ; y=-3/4)
vậy ....
chúc bn hc tốt
a, B=x2+4xy+y2+x2-8x+16+2012
B=(x+y) 2+(x-4)2+2012
Vậy B >=2012 ( Dấu "=" xảy ra khi x=4,y=-4)
b làm tương tự
c, 9x2+6x+1+y2-4y+4+x2-4xz+4z2=0
(3x+1)2+(y-4)2+(x-2z)2=0
Vậy 3x+1=0 => x = -1/3
y-4=0 => y=4
x-2z=0 thế x=-1/3 ta được. -1/3-2z=0 => z = -1/6
Bạn nhớ ghi lại đề minh không ghi đề
a) \(B=2x^2+y^2+2xy-8x+2028\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2-8x+4^2\right)+2012=\left(x+y\right)^2+\left(x-4\right)^2+2012\ge2012\)
\(MinB=2012\Leftrightarrow\hept{\begin{cases}x=4\\y=-4\end{cases}}\)
b)\(C=x^2+5y^2+4xy+2x+2y-7\)
\(=\left(x^2+4xy+4y^2\right)+\left(2x+4y\right)+1+\left(y^2-2y+1\right)-9\)
\(=\left(\left(x+2y\right)^2+2\left(x+2y\right)+1\right)+\left(y-1\right)^2-9=\left(x+2y+1\right)^2+\left(y-1\right)^2-9\ge9\)
\(MinC=-9\Leftrightarrow\hept{\begin{cases}x+2y+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
c)\(10x^2+y^2+4z^2+6x-4y-4xz+5=0\)
\(\Leftrightarrow\left(9x^2+6x+1\right)+\left(y^2-4y+4\right)+\left(x^2-4xz+4z^2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)^2+\left(y-2\right)^2+\left(x-2z\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}3x+1=0\\y-2=0\\x-2z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{3}\\y=2\\z=-\frac{1}{6}\end{cases}}\)
\(A=4x^2+4xy+y^2+x^2-2x+1+y^2+4y+4+2019\)
\(A=\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+2019\ge2019\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}2x+y=0\\x-1=0\\y+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
cảm ơn b nha