Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-8x+16+x^2+4xy+4y^2+y^2+4y+4+2004\)
\(=\left(x-4\right)^2+\left(x+2y\right)^2+\left(y+2\right)^2+2004\ge2004\)
Dấu ''='' xảy ra khi x = 4 ; y = -2
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(A=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4\)
\(minA=4\Leftrightarrow x=2\)
\(B=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2\ge2\)
\(minB=2\Leftrightarrow x=\dfrac{3}{2}\)
\(C=3\left(x^2+2x+1\right)-8=3\left(x+1\right)^2-8\ge-8\)
\(minC=-8\Leftrightarrow x=-1\)
\(D=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4\le-4\)
\(maxD=-4\Leftrightarrow x=1\)
\(E=-\left(4x^2-6x+\dfrac{9}{4}\right)-\dfrac{11}{4}=-\left(2x-\dfrac{3}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\)
\(maxA=-\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{4}\)
\(F=-2\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{55}{8}=-2\left(x-\dfrac{1}{4}\right)^2-\dfrac{55}{8}\le-\dfrac{55}{8}\)
\(maxF=-\dfrac{55}{8}\Leftrightarrow x=\dfrac{1}{4}\)
\(G=\left(x^2-4xy+4y^2\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-2y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(maxG=\dfrac{3}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-\dfrac{1}{2}\end{matrix}\right.\)
\(H=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)+16=-\left(x-1\right)^2-\left(y+2\right)^2+16\le16\)
\(maxH=16\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
đặt biểu thức là A. Ta có:
A=x2 - 4xy + 5y2 - 2y + 28
= (x2-4xy+4y2) + (y2-2y +1)+27
=(x-2y)2 + (y-1)2 + 27
vì (x-2y)2 ≥ 0; (y-1)2 ≥ 0 ⇔ A ≥ 27
⇔\(\left[\begin{array}{} (x-2y)^2=0\\ (y-1)^2 =0 \end{array} \right.\) ⇔\(\left[\begin{array}{} x=2\\ y=1\end{array} \right.\)
Vậy, Min A=27 khi x=2; y=1
Biểu thức không có giá trị nhỏ nhất nhé. Bạn xem lại đã viết biểu thức đúng chưa nhỉ?
Nãy lộn nhé,em làm lại:
\(D=\left(x^2+4xy+2x+4y^2+4y+1\right)+x^2+8\)
\(=\left[x^2+2x\left(2y+1\right)+\left(2y+1\right)^2\right]+x^2+8\)
\(=\left(x+2y+1\right)^2+x^2+8\ge8\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2=0\\x+2y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-\frac{1}{2}\end{cases}}\)
Dạng này mình không quen cho lắm nên không chắc nha!
\(D=\left(x^2+4xy+2x+4y^2+4y+1\right)+8\)
\(=\left[x^2+2x\left(2y+1\right)+\left(2y+1\right)\right]+8\)
\(=\left(x+2y+1\right)^2+8\ge8\)
Dấu "=" xảy ra khi \(\left(x+2y+1\right)^2=0\Leftrightarrow2y+1=-x\)
Mà \(\left(x+2y+1\right)^2=x^2+2x\left(2y+1\right)+\left(2y+1\right)\)
\(=x^2-2x^2-x=-x^2-x=0\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Thay vào D loại x = -1 suy ra x = 0 tức là y = -1/2
\(M=x^2+5y^2-4xy+2x-8y+2021\)
\(=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(y^2-4y+4\right)+2016\)
\(=\left(x-2y+1\right)^2+\left(y-2\right)^2+2016\ge2016\)
Vậy GTNN của M là 2016 đạt đươc tại \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
A= x2- 4xy +4y2 + y2 +9 = (x-2y)2 + y 2 +9 \(\ge\) 9
Giá trị nhỏ nhất của A là 9 khi x=y=0
Lời giải:
$A=x^2+5y^2-4xy+4y+9$
$=(x^2+4y^2-4xy)+y^2+4y+9$
$=(x-2y)^2+(y^2+4y+4)+5$
$=(x-2y)^2+(y+2)^2+5\geq 5$
Vậy GTNN của $A$ là $5$. Giá trị này đạt tại $x-2y=y+2=0$
$\Leftrightarrow y=-2; x=-4$