Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = | x - 3 | + 10 > 0
Vì | x - 3 |\(\ge\)0
Dấu = Xảy ra <=> x = 3
Vậy gtnn của A = 10 <=> x = 3
Vì \(\left|x-3\right|\ge0\left(\forall x\right)\)
\(\Rightarrow A=\left|x-3\right|+10\ge10\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x-3\right|=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy Amin =10 khi và chỉ khi x = 3
Vì \(\left(x-1\right)^2\ge0\left(\forall x\right)\Rightarrow B=-7+\left(x-1\right)^2\ge-7\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy Bmin = -7 khi và chỉ khi x = 1
Vì \(\left|x-2\right|\ge0\left(\forall x\right)\Rightarrow C=-3-\left|x-2\right|\le-3\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x-2\right|=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy Cmax = -3 khi và chỉ khi x = 2
Vì \(\left(x-2\right)^2\ge0\left(\forall x\right)\Rightarrow15-\left(x-2\right)^2\le15\)
Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy Dmax = 15 khi và chỉ khi x = 2
a. A=x+|x|
TH1:x>0
=>A=x+x=2x
TH2 \(x\le0\)
=>A=-x+x=0
hoặc A=0+0=0
kết hợp TH1,2
=>A nhỏ nhất khi \(x\le0\)
TH1:\(x\le6\)
=>x - 7= -y
=>\(\left|x-7\right|\)=y
Mà x < 7
=> y + (6 - x) \(\ge y\)
Ta có giá trị y nhỏ nhất là 1 khi x = 6
=>GTNN của B là
B=|x - 7| + 6 - x
B=|6 - 7| + 6 - 6
B=1 + 6 - 6
B=1
TH2:x>6
=>x - 7 = y
=>\(\left|x-7\right|\)=y
=> y + 6 - x luôn là -1 vì y + 6 < x một đơn vị
VD: |7 - 7| + 6 - 7 = 0 + 6 - 7 (y + 6 < x)
|99 - 7| + 6 - 8 = 92 + 6 - 99 (y + 6 < x)
Kết hợp TH1, 2
=>GTNN của B là -1
a, A =I x - 3I +10
\(\Rightarrow A\ge10\)( I x - 3 I luôn lớn hơn hoặc bằng 0 vs mọi x)
Dấu ''='' xảy ra khi x-3=0
<=>x = 3
Vậy giá trị nhỏ nhất của A là 10 khi x = 3
b, \(B=-7+\left(x-1\right)^2\)
\(\Rightarrow B\ge-7\forall x\)
Dấu ''='' xảy ra khi và chỉ khi \(x-1=0\Leftrightarrow x=1\)
Vậy giá trị nhỏ nhất của B là -7 khi x=1
c, C= -3 - I x -2I
\(\Rightarrow C\le-3\)( Vì I x - 2 I luôn luôn lớn hơn hoặc bằng 0 với mọi x)
Dấu ''='' xảy ra khi và chỉ khi : x - 2 = 0 <=> x=2
Vây giá trị lớn nhất của C là - 3 khi x = 2.
d, \(D=15-\left(x-2\right)^2\)
\(\Rightarrow D\le15\)
Dấu ''='' xảy ra khi và chỉ khi : x - 2 =0 <=> x =2
Vây giá trị lớn nhất của D là 15 khi x = 2
Ta có \(|x-5|\ge0;\forall x\Rightarrow|x-5|+25\ge25;\forall x\Rightarrow A\ge25,\forall x\)
GTNN của A là 25 khi và chỉ khi x=5
\(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2-16\ge-16;\forall x\Rightarrow B\ge-16,\forall x\)
GTNN của B là -16 khi x=2
b) \(|x+3|\ge0;\forall x\Rightarrow-|x+3|-5\le-5;\forall x\Rightarrow C\le-5,\forall x\)
GTLN của C là -5 khi và chỉ khi x=-3
\(\left(x+1\right)^2\ge0;\forall x\Rightarrow-\left(x+1\right)^2\le0;\forall x\Rightarrow D\le14,\forall x\)
GTLN của D là 14 khi và chỉ khi x = -1
a, Tìm giá trị nhỏ nhất của biểu thức:
A = \(|x-5|+25\)
Để A nhỏ nhất \(\Rightarrow\)\(|x-5|+25\)nhỏ nhất
\(\Rightarrow\)\(|x-5|\)nhỏ nhất
Mà \(|x-5|\)\(\ge0\forall x\inℤ\)
\(\Rightarrow\) \(|x-5|\)\(=0\) (1)
Thay (1) vào A, ta có:
A = 0 + 25
A = 25
Vậy giá trị nhỏ nhất của A là 25
\(B=-16+\left(x-2\right)^2\)
Để B nhỏ nhất \(\Rightarrow\)\(-16+\left(x-2\right)^2\)nhỏ nhất
\(\Rightarrow\left(x-2\right)^2\)nhỏ nhất
Mà \(\left(x-2\right)^2\)\(\ge0\forall x\inℤ\)
\(\Rightarrow\left(x-2\right)^2\)\(=0\) (2)
Thay (2) vào B, ta có :
B = \(-16+0\)
B = \(-16\)
Vậy giá trị nhỏ nhất của B là -16
a, Thay x = -2017 vào biểu thức, ta đc
A=|-2017 + 2018| - 107
A=|1| - 107
A=1 - 107
A= -106
Vậy A = -106
b, Ta có:
|x + 2018| - 107 = |-107|
|x + 2018| - 107 = 107
|x + 2018| = 107 + 107
|x + 2018| = 214
Suy ra x + 2018 = 214 hoặc x + 2018 = -214
--Nếu x + 2018 = 214
x = 214 - 2018
x = -1804
--Nếu x + 2018 = -214
x = -214 - 2018
x = -2232
Vậy x = -1804; x = -2232
Chúc bạn học tốt
để A\(\in\)Z
=>5 chia hết x-2
=>x-2\(\in\){1,-1,5,-5}
=>x\(\in\){3,1,7,-3}
\(C=\frac{3x-19}{x-5}=\frac{3\left(x-5\right)-4}{x-5}=\frac{3\left(x-5\right)}{x-5}-\frac{4}{x-5}\in Z\)
=>4 chia hết x-5
=>x-5\(\in\){1,-1,2,-2,4,-4}
=>x\(\in\){6,4,7,3,9,1}
B tương tự nhé
a, Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2-3\ge-3\forall x\)
Hay: \(A\ge3\forall x\)
Vậy: Min A = 3 tại \(\left(x-1\right)^2=0\Rightarrow x=1\)
b,Ta có: \(\left(x-2\right)^2\ge0\forall x\)
=> \(4+\left(x-2\right)^2\ge4\forall x\)
Hay: \(B\ge4\forall x\)
Vậy: Min B = 4 tại \(\left(x-2\right)^2=0\Rightarrow x=2\)
=.= hk tốt!!
\(\text{a) }\left(x-1\right)^2-3\)
\(\text{Vì }\left(x-1\right)^2\ge0\text{ }\forall x\)
\(\Rightarrow A=\left(x-1\right)^2-3\ge-3\)
\(\text{Dấu ''='' xảy ra khi :}\)
\(\left(x-1\right)^2=0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
\(\text{Vậy Min}_A=-3\Leftrightarrow x=1\)
\(\text{b) }B=4+\left(x-2\right)^2\)
\(\text{Vì }\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow B=4+\left(x-2\right)^2\ge4\)
\(\text{Dấu ''='' xảy ra khi :}\)
\(\left(x-2\right)^2=0\)
\(\Rightarrow x-2=0\)
\(\Rightarrow x=2\)
\(\text{Vậy Min}_B=4\Leftrightarrow x=2\)
a. Ta thấy:
\(\left|x\right|=x\)hoặc \(\left|x\right|=-x\)
Trường hợp 1:
\(\left|x\right|=x\)
\(\Rightarrow x+\left|x\right|=x+x=2x\)
\(\Rightarrow A\)nhỏ nhất = \(2.0=0\)
Trường hợp 2:
\(\left|x\right|=-x\)
\(\Rightarrow x+\left|x\right|=x+\left(-x\right)=0\)
Qua hai trường hợp ta thấy:
Giá trị nhỏ nhất của biểu thức \(A=x+\left|x\right|\)là 0.
Vậy giá trị nhỏ nhất của biểu thức \(A=x+\left|x\right|\)là 0.
b) Trường hợp 1: \(x< 7\)
\(\Rightarrow\left|x-7\right|+6-x=\left(7-x\right)+6-x\)
\(=7+6-x-x=13-2x\)
\(\Rightarrow\)Để giá trị của biểu thức B là nhỏ nhất thì \(2x\)phải lớn nhất
Mà \(x< 7\Rightarrow x=6\)
\(\Rightarrow13-2x=13-2.6=1\)
Trường hợp 2: \(x\ge7\)
\(\Rightarrow\left|x-7\right|+6-x=x-7+6-x\)
\(=x-x-7+6=-1\)
Qua hai trường hợp ta thấy giá trị nhỏ nhất của biểu thức \(B=\left|x-7\right|+6-x\)là -1
Vậy giá trị nhỏ nhất của biểu thức \(B=\left|x-7\right|+6-x\)là -1.