\(2x^2-3x-4\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2018

\(2x^2-3x-4=2\left(x^2-2.x.\frac{3}{4}+\frac{9}{16}\right)-\frac{9}{8}-4\)

\(=2\left(x-\frac{3}{4}\right)^2-\frac{41}{8}\). Do \(2\left(x-\frac{3}{4}\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-\frac{3}{4}\right)^2-\frac{41}{8}\ge-\frac{41}{8}\)

\(\Rightarrow2x^2-3x-4\ge-\frac{41}{8}\).Vậy GTNN của biểu thức đó là \(-\frac{41}{8}\)

Dấu = xảy ra khi \(x=\frac{3}{4}.\)

7 tháng 3 2019

khong biet

25 tháng 3 2020

Lập bảng xét dấu rồi giải đi

28 tháng 7 2017

Vì \(\left|2x+1\right|\ge0;\left|3x-4\right|\ge0;\left|2x-5\right|\ge0\)

\(\Rightarrow\left|2x+1\right|+\left|3x-4\right|+\left|2x-5\right|\ge0\)

\(\Rightarrow\left|2x+1\right|+\left|3x-4\right|+\left|2x-5\right|+5\ge5\)

\(\Rightarrow A\ge5\)

\(\Rightarrow\)Giá trị nhỏ nhất của A là 5

20 tháng 7 2015

a.  ta có (2x-5)2 >= 0 với mọi x thuộc R

vậy 5 -(2x-5)2 <= 5

dấu = xảy ra khi (2x-5)2=0

                     vậy 2x-5=0

                           2x =5

                            x= 5/2=2,5

Vậy để B lớn nhất thì x=2,5

b. ta có | 2x-4| >= 0 với mọi x thuộc R 

             | 2x-6| >= 0 với mọi x thuộc R

vậy | 2x-4 |- |2x-6| >= 0 

dấu = xảy ra khi |2x-4|          và            |2x-6|              đều bằng 0

                   => 2x-4=0                      => 2x - 6=0

                       2x =4                              2x =6

                        x=4/2=2                          x= 6/2=3

                      

8 tháng 9 2019

Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi

a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)

Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)

\(\Leftrightarrow A\ge-1\)

Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1

Vậy Giá trị nhỏ nhất của A là -1

b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1

17 tháng 4 2020

eeeee

13 tháng 3 2017

\(a.A=2x^2+6x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+20\)

  \(A=\left(2x+\frac{3}{2}\right)^2+\frac{71}{4}\ge\frac{71}{4}\)

Vậy MinA = \(\frac{71}{4}\Leftrightarrow\left(2x+\frac{3}{2}\right)^2=0\)

                           \(\Leftrightarrow x=-\frac{3}{4}\)

3 tháng 1 2019

A=3x-17/4-x

=>(-1)A=17-3x/4-x

=>(-1)A=12-3x+5/4-x

=> (-1)A=3+(5/4-x)=>A=-3-(5/4-x)

Để A có GTNN=>-3-(5/4-x) có GTNN 

=>5/4-x có GTLN

=>4-x có GTNN =>=>4-x=-5=>x=9

=>A=3.9-17/4-9

=>A=10/-5

=>A=-2

Vậy..........

3 tháng 1 2019

GTNN là gì vậy

12 tháng 3 2019

1) \(2x=3y=5z\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-2y}{15-2\cdot10}=\frac{x-2y}{-5}\)

*TH1: Nếu x-2y = 5

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{5}{-5}=-1\)

\(\Rightarrow\hept{\begin{cases}x=-15\\y=-10\\z=-6\end{cases}}\)\(\Rightarrow3x-2z=3\left(-15\right)-2\cdot6=-45-12=-57\)

*TH2: Nếu x-2y = -5

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=1\)\(\Rightarrow\hept{\begin{cases}x=15\\y=10\\z=6\end{cases}\Rightarrow3x-2z=3\cdot15-2\cdot6=45-12=33}\)

Vậy giá trị nhỏ nhất của 3x - 2z là -57.

2)\(B=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\le1+\frac{12}{3}=5\)

Dấu "=" xảy ra khi x = 0.

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak