Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để M nguyên thì 4n+9 chia hết cho 2n+3
<=> 2(2n+3) +3 chia hết cho 2n+3
=> 3 chia hết cho 2n+3
Vì n nguyên nên 2n+3 là ước của 3
Các ước của 3 là 3;1;-1;-3
Do đó,2n+3 thuộc {3;1;-1;-3}
=> n thuộc {0;-0,5;-2;-3}
Vì n nguyên nên n thuộc {0;-2;-3}
Vậy ...
b, chứng minh tương tự nhưng tử ko chia hết cho mẫu
a) Để \(M=\frac{4n+9}{2n+3}\)\(\inℤ\)
\(\Rightarrow4n+9⋮2n+3\)
\(\Rightarrow\)\(2(2n+3)+3⋮2n+3\)
Mà 2(2n+3) chia hết cho 2n+3
=> 2 chia hết cho 2n +3
=> 2n+3 \(\inƯ\left(3\right)\)
TA CÓ BẢNG SAU : ( Lập bảng nha )
phần b mik chưa nghĩ ra nha
Hai bạn Misaki và Ngọc Ánh lập luận sai sai ở đoạn 3n+2 nhé
Bài này mình làm để bạn tham khảo , sai xót bỏ qua nhé
Ta có \(M=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{2.\left(3n+2\right)-5}{3n+2}=2-\frac{5}{3n+2}\)
Để M có giá trị nhỏ nhất thì \(\frac{5}{3n+2}\)có giá trị lớn nhất
Khi đó 3n +2 có giá trị nhỏ nhất mà \(n\in Z\)nên 3n + 2 nhỏ nhất khi và chỉ khi \(3n+2=2\)
\(\Rightarrow n=0\)Nên \(M=\frac{6.0-1}{3.0+2}=-\frac{1}{2}\)
Vậy giá trị nhỏ nhất của M = -1/2 khi và chỉ khi n = 0
Ta có: \(A=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=2-\frac{5}{3n-2}.\)
Để A có giá trị nhỏ nhất ( n thuộc N ) thì \(\frac{5}{3n+2}\)đạt giá trị lớn nhất.
=> 3n + 2 đạt giá trị tự nhiên nhỏ nhất
=> 3n đạt giá trị tự nhiên nhỏ nhất
=> n là số tự nhiên nhỏ nhất
=> n = 0
học tốt ~~~
Để A là số nguyên
<=> 4n + 1 chia hết cho 2n + 3
<=> 4n + 6 - 5 chia hết cho 2n + 3
<=> 2(2n + 3) - 5 chia hết cho 2n + 3
<=> 5 chia hết cho 2n + 3
<=> 2n + 3 thuộc Ư(5) = {-1 ; 1 ; -5 ; 5}
<=> n thuộc {-2 ; -1 ; -4 ; 1}
\(M=\left|3x+1\right|+3x-49\)
\(M=\left|-3x-1\right|+3x-49\ge-3x-1+3x-49\)
\(M\ge-50\)
\(N=\left|x-7\right|+x-20=\left|7-x\right|+x-20\)
\(N\ge7-x+x-20=-13\)
\(C=\left|2x+5\right|+\left|x-1\right|+\left|2x-35\right|\)
\(C=\left|2x+5\right|+\left|35-2x\right|+\left|x-1\right|\)
\(C\ge\left|2x+5+35-2x\right|+\left|x-1\right|=40+\left|x-1\right|\ge40\)
ta có M=\(\frac{20-7n}{5-2n}=>2M=\frac{40-14n}{5-2n}\left(=\right)2M=\frac{5+7.\left(5-2n\right)}{5-2n}\left(=\right)\frac{5}{5-2n}+7=>M=\frac{5}{10-4n}+\frac{7}{2}\)
Để M nhỏ nhất thì \(\frac{5}{10-4n}+\frac{7}{2}\)nhỏ nhất
để \(\frac{5}{10-4n}+\frac{7}{2}\)nhỏ nhất thì \(\frac{5}{10-4n}\)nhỏ nhất
xét 2 TH
TH1:10-4n>0=>\(\frac{5}{10-4n}\)>0
TH2 10-4<0=>\(\frac{5}{10-4n}< 0\)
để \(\frac{5}{10-4n}\)nhỏ nhất thì \(\frac{5}{10-4n}< 0\)mà n nguyên =>10-4n=-2(=)4n=12(=)n=3
=> M=\(\frac{5}{10-12}+\frac{7}{2}=\frac{-5}{2}+\frac{7}{2}=1\)
Vậy min(m)=1 khi n=3
Cho biểu thức M = \(\frac{3}{n-4}\)với n \(\in\) \(ℤ\). Tìm tất cả các giá trị n để M là số nguyên .
Điều kiện :n-4\(\ne\)0\(\Leftrightarrow n\ne4\)
Để M là số nguyên thì 3\(⋮n-4\)
\(\Leftrightarrow n-4\inƯ\left(3\right)\)
\(\Leftrightarrow n-4\in\left\{-3;-1;1;3\right\}\)
\(\Leftrightarrow n\in\left\{1;3;5;7\right\}\left(TM\right)\)
Vậy .......