Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=x^2+2y^2+2xy-2x-6y+2015\)
\(Q=x^2+2x\left(y-1\right)+2y^2-6y+2015\)
\(Q=x^2+2x\left(y-1\right)+y^2-2y+1+y^2-4y+4+2010\)
\(Q=x^2+2x\left(y-1\right)+\left(y-1\right)^2+\left(y-2\right)^2+2010\)
\(Q=\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\forall x;y\)
Dấu "=" xảy ra khi x=-3;y=4
\(A=x^2+2y^2+2xy-4x+6y+2020\)
\(A=\left(x^2+y^2+2^2+2xy-4y-4x\right)+\left(y^2+10y+25\right)+1991\)
\(A=\left(x+y-2\right)^2+\left(y+5\right)^2+1991\ge1991\)
Vậy \(Min_A=1991\)khi \(\hept{\begin{cases}x+y-2=0\\y+5=0\end{cases}}\hept{\begin{cases}x+y=2\\y=-5\end{cases}}\hept{\begin{cases}x=7\\y=-5\end{cases}}\)
Lê Hà Anh Tiến
lộn đề ko vậy
\(A=2x^2-2xy+6y^2-12x+2y+45\) chứ
x^2 - 2xy + 6y^2 - 12x + 2y +45
= x^2 - 2x(y+6) + (y+6)^2 - (y+6)^2 + 6y^2 +2y + 45
= (x - y - 6)^2 - y^2 - 12y - 36 + 6y^2 + 2y + 45
= (x - y - 6)^2 + 5y^2 - 10y + 9
= (x - y - 6)^2 + 5.(y^2 - 2y +1) + 4
= (x - y - 6)^2 + 5.(y-1)^2 + 4
=>> MIN=4 khi (x;y)={(7;1)}
tick nha
\(N=2x^2+y^2+2xy-4x-2y+3\)
\(N=\left(x^2+2xy+y^2\right)+x^2-4x-2y+3\)
\(N=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]+\left(x^2-2x+1\right)+1\)
\(N=\left(x+y-1\right)^2+\left(x-1\right)^2+1\)
Mà \(\left(x+y-1\right)\ge0\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow N\ge1\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)
Vậy \(N_{Min}=1\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)
\(N=2x^2+y^2+2xy-4x-2y\)\(+3\)
\(=\left(x^2+2xy+y^2\right)+x^2-2\left(2x+y\right)+3\)
\(=\left[\left(x+y\right)^2-2\left(2x+y\right)+1\right]+2+x^2\)
\(=\left(x+y+1\right)^2+x^2+2\)
\(Do\)\(\left(x+y+1\right)^2\)\(\ge\)\(0\)\(\forall\)\(x\)\(;\)\(y\)
\(x^2\)\(\ge\)\(0\)\(\forall\)\(x\)
=.>\(\left(x+y+1\right)^2+x^2+2\)\(\ge\)\(2\)\(\forall\)\(x\)\(;\)\(y\)
=>\(N\)\(\ge\)\(2\)\(\forall\)\(x\)\(;\)\(y\)
Dấu = xảy ra khi:
\(\hept{\begin{cases}\left(x+y+1\right)^2=0\\x^2=0\end{cases}}\)
=>\(\hept{\begin{cases}x+y+1=0\\x=0\end{cases}}\)
=>\(\hept{\begin{cases}x+y=-1\\x=0\end{cases}}\)
=>\(\hept{\begin{cases}y=-1\\x=0\end{cases}}\)
Vậy \(N_{min}\)\(=\)\(2\)khi \(y=-1\)\(;\)\(x=0\)
Chúc pạn họk tốt~~~!!! :3
\(A=2x^2+2xy+y^2-2x+2y+1\)
\(A=x^2+2xy+y^2+2x+2y+x^2-4x+4+1-4\)
\(A=\left(x+y\right)^2+2\left(x+y\right)+1+\left(x^2-4x+4\right)-4\)
\(A=\left(x+y+1\right)^2+\left(x-2\right)^2-4\)
Vì \(\left(x+y+1\right)^2\ge0\forall x;y\)và \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow A\ge-4\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y+1=0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)
Vậy....
\(A=x^2-12x+18\)
\(A=x^2-2.x.6+36-36+18\)
\(A=\left(x-6\right)^2-18\)
Vì \(\left(x-6\right)^2\ge0\)
Nên \(\left(x-6\right)^2-18\ge-18\)
Vậy \(A_{MIN}=-18\Leftrightarrow x-6=0\Leftrightarrow x=6\)
Ta có : \(A=x^2-12x+18\)
\(=x^2-2.x.6+6^2-18\)
\(=\left(x-6\right)^2-18\)
Có : \(\left(x-6\right)^2\ge0\)
\(\Rightarrow\left(x-6\right)^2-18\ge-18\)
Dấu " = " xảy ra khi \(x-6=0\)
\(x=6\)
Vậy \(MIN_A=-18\) khi \(x=6\)
1)x=7-2y nên x+2y=7
A=3x+6y+5=3x(x+2y)+5=3x7+5=26
2)y-x=y+(-x)=-x+y=-(x-y)=-10
Vậy x-y=10
Nguyễn Thị Ngọc Ánh: Mk chưa hiểu câu 1 cho lắm, bn giải kĩ hơn đc ko?
x^2 - 2xy + 6y^2 - 12x + 2y +45
= x^2 - 2x(y+6) + (y+6)^2 - (y+6)^2 + 6y^2 +2y + 45
= (x - y - 6)^2 - y^2 - 12y - 36 + 6y^2 + 2y + 45
= (x - y - 6)^2 + 5y^2 - 10y + 9
= (x - y - 6)^2 + 5.(y^2 - 2y +1) + 4
= (x - y - 6)^2 + 5.(y-1)^2 + 4
=>> MIN = 4 khi (x;y) = {(7;1)}
\(A=x^2-2xy+6y^2-12x+2y+45\)
\(=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+4\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
GTNN A = 4 Khi: \(\hept{\begin{cases}y-1=0\\x-y-6=0\end{cases}\Rightarrow\hept{\begin{cases}y=1\\x=7\end{cases}}}\)