Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đánh đề cẩn thận chứ
\(A=\left(2n+3\right)^2-\left(n-1\right)\left(n-5\right)+2\)
\(A=4n^2+12n+9-n^2+6n-5+2\)
\(A=3n^2+18n+6\)
\(A=3\left(n^2+6n+2\right)\)
\(A=3\left(n^2+2\cdot n\cdot3+3^2-7\right)\)
\(A=3\left[\left(n+3\right)^2-7\right]\)
\(A=3\left(n+3\right)^2-21\ge21\forall n\)
Dấu "=" xảy ra \(\Leftrightarrow n+3=0\Leftrightarrow n=-3\)
Ta có \(A=m^3+n^3+mn\)
\(A=\left(m+n\right)^3-3mn\left(m+n\right)+mn\)
\(A=1-3mn+mn\)
\(A=1-2mn\)
\(A=1-2m\left(1-m\right)\)
\(A=2m^2-2m+1\)
\(A=2\left(m^2-m+\dfrac{1}{2}\right)\)
\(A=2\left(m^2-2m.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)\)
\(A=2\left(m-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\)
Do \(\left(m-\dfrac{1}{2}\right)^2\ge0\) nên \(A\ge\dfrac{1}{2}\). ĐTXR \(\Leftrightarrow m=\dfrac{1}{2}\Rightarrow n=\dfrac{1}{2}\).
Vậy GTNN của A là \(\dfrac{1}{2}\) khi \(m=n=\dfrac{1}{2}\)
Bài 1:
a: \(M=x^2-10x+3\)
\(=x^2-10x+25-22\)
\(=\left(x^2-10x+25\right)-22\)
\(=\left(x-5\right)^2-22>=-22\forall x\)
Dấu '=' xảy ra khi x-5=0
=>x=5
b: \(N=x^2-x+2\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi x-1/2=0
=>x=1/2
c: \(P=3x^2-12x\)
\(=3\left(x^2-4x\right)\)
\(=3\left(x^2-4x+4-4\right)\)
\(=3\left(x-2\right)^2-12>=-12\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
\(A=\left(n-1\right)n\left(n+1\right)\left(n+2\right)-3\)
\(=\left[n\left(n+1\right)\right]\left[\left(n-1\right)\left(n+2\right)\right]-3\)
\(=\left(n^2+n\right)\left(n^2+n-2\right)-3\)
\(=\left[\left(n^2+n-1\right)+1\right]\left[\left(n^2+n-1\right)-1\right]-3\)
\(=\left(n^2+n-1\right)^2-1^2-3\)
\(=\left[\left(n^2+2.\frac{1}{2}.n+\frac{1}{4}\right)-1,25\right]^2-4\)
\(=\left[\left(n+\frac{1}{2}\right)^2-1,25\right]^2-4\ge\left(-1,25\right)^2-4=-\frac{39}{16}\)
\(\Rightarrow MinA=-\frac{39}{16}\Leftrightarrow n=-\frac{1}{2}\)
Vậy ...