K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2016

\(A=\left(n-1\right)n\left(n+1\right)\left(n+2\right)-3\)

\(=\left[n\left(n+1\right)\right]\left[\left(n-1\right)\left(n+2\right)\right]-3\)

\(=\left(n^2+n\right)\left(n^2+n-2\right)-3\)

\(=\left[\left(n^2+n-1\right)+1\right]\left[\left(n^2+n-1\right)-1\right]-3\)

\(=\left(n^2+n-1\right)^2-1^2-3\)

\(=\left[\left(n^2+2.\frac{1}{2}.n+\frac{1}{4}\right)-1,25\right]^2-4\)

\(=\left[\left(n+\frac{1}{2}\right)^2-1,25\right]^2-4\ge\left(-1,25\right)^2-4=-\frac{39}{16}\)

\(\Rightarrow MinA=-\frac{39}{16}\Leftrightarrow n=-\frac{1}{2}\)

Vậy ...

25 tháng 12 2018

\(A=x^2-2x+4\)

\(A=x^2-2x+1+3=\left(x-1\right)^2+3\ge3\)

dấu = xảy ra khi x-1=0

=> x=1

Vậy MinA=3 khi x=1

14 tháng 10 2018

Đánh đề cẩn thận chứ 

\(A=\left(2n+3\right)^2-\left(n-1\right)\left(n-5\right)+2\)

\(A=4n^2+12n+9-n^2+6n-5+2\)

\(A=3n^2+18n+6\)

\(A=3\left(n^2+6n+2\right)\)

\(A=3\left(n^2+2\cdot n\cdot3+3^2-7\right)\)

\(A=3\left[\left(n+3\right)^2-7\right]\)

\(A=3\left(n+3\right)^2-21\ge21\forall n\)

Dấu "=" xảy ra \(\Leftrightarrow n+3=0\Leftrightarrow n=-3\)

20 tháng 3 2023

Ta có \(A=m^3+n^3+mn\)

\(A=\left(m+n\right)^3-3mn\left(m+n\right)+mn\)

\(A=1-3mn+mn\)

\(A=1-2mn\)

\(A=1-2m\left(1-m\right)\)

\(A=2m^2-2m+1\) 

\(A=2\left(m^2-m+\dfrac{1}{2}\right)\)

\(A=2\left(m^2-2m.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)\)

\(A=2\left(m-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\) 

Do \(\left(m-\dfrac{1}{2}\right)^2\ge0\) nên \(A\ge\dfrac{1}{2}\). ĐTXR \(\Leftrightarrow m=\dfrac{1}{2}\Rightarrow n=\dfrac{1}{2}\).

Vậy GTNN của A là \(\dfrac{1}{2}\) khi \(m=n=\dfrac{1}{2}\)

 

17 tháng 12 2023

Bài 1:

a: \(M=x^2-10x+3\)

\(=x^2-10x+25-22\)

\(=\left(x^2-10x+25\right)-22\)

\(=\left(x-5\right)^2-22>=-22\forall x\)

Dấu '=' xảy ra khi x-5=0

=>x=5

b: \(N=x^2-x+2\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi x-1/2=0

=>x=1/2

c: \(P=3x^2-12x\)

\(=3\left(x^2-4x\right)\)

\(=3\left(x^2-4x+4-4\right)\)

\(=3\left(x-2\right)^2-12>=-12\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2