Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
~~~~HD~~~~
\(|x-2005|+|x-2004|\)
\(=|x-2005|+|2004-x|\ge|x-2005+2004-x|=1\)
Vậy GTNN của biểu thức trên là: 1 <=> (x-2005)(2004-x) >=0
<=> 2004 =< x =< 2005
\(|x-2005|+|x-2004|\)
\(|x-2005|,|x-2004|\ge0\forall x\)
\(\Rightarrow\hept{\begin{cases}|x-2005|=0\\|x-2004|=0\end{cases}\Rightarrow\hept{\begin{cases}x-2005=0\\x-2004=0\end{cases}}}\Rightarrow\hept{\begin{cases}x=2005\\x=2004\end{cases}}\)
Vậy....
\(F=\left(x+1\right)^2+\left(2x-1\right)^2=x^2+2x+1+4x^2-4x+1=5x^2-2x+2=\left(x\sqrt{5}\right)^2-2x\sqrt{5}.\dfrac{1}{\sqrt{5}}+\dfrac{1}{5}+\dfrac{9}{5}=\left(x\sqrt{5}+\dfrac{1}{\sqrt{5}}\right)^2+\dfrac{9}{5}\ge0\)- minF=\(\dfrac{9}{5}\)⇔\(x\sqrt{5}+\dfrac{1}{\sqrt{5}}=0\)⇔x=\(\dfrac{-1}{5}\)
\(E=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\text{≥}-36\) ∀x (vì \(\left(x^2+5x\right)^2\text{≥}0\))
MinE=-36 ⇔ \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
a,M=x2+2x2+4-2
=(x+2)2-2
(x+2)2-2>=-2 voi moi x thuoc R
vay GTNN cua M=-2 khi x=-2
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)
a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
Dấu "=" \(\Leftrightarrow x=-1\)
b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)
c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)
Dấu "=" \(\Leftrightarrow x=2\)
nhân cái đầu với cái cuối, hai cái giữa nhân vào nhau rồi đặt ẩn là ra
A = x^2 - 4x + 12 = x^2 - 4x + 4 + 8 = ( x+ 2 )^2 + 8 >= 8 ( với mọi x)
VẬy GTNN của BT klaf 8 khi x - 2 = 0 => x = 2
b) 1 + 6x - x^2 = - ( x^2 - 6x - 1 ) = - ( x^2 - 6x + 9 - 10 )=- ( x - 3 )^2 + 10 <= -10
VẬy GTLN là -10 khi x = 3
sửa lại:
a) \(A=x^2-4x+12\)
\(=\left(x^2-4x+2^2\right)+8\)
\(=\left(x-2\right)^2+8\)
mà (x + 2)2 > 0
Vậy giá trị nhỏ nhất của A = 8 tại x = 2
b) \(A=1+6x-x^2\)
\(=-\left(x^2-6x+3^2\right)+10\)
\(=-\left(x-3\right)^2+10\)
mà -(x - 3)2 < 0
Vậy giá trị lớn nhất của A = 10 tại x = 3
|-x+1| \(\ge\) 0 với mọi x
Suy ra 2005 + |-x+1| \(\ge\) 2005 với mọi x
hay A \(\ge\) 2005 với mọi x.
Đẳng thức xảy ra khi và chỉ khi -x +1 =0
=> x=1