Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ B = (x+y)((x+y)2 - 3xy)+(x+y)2 - 2xy = 2 - 5xy = 2 - 5x(1-x)=5x2 - 5x + 2 = (x√5 - √5 /2)2 +3/4 >= 3/4
Đạt GTNN là 3/4 khi x=y=1/2
2/ P = xy = x(6-x)=-x2 +6x = 9 - (x-3)2 <=9
GTLN là 9 khi x=y=3
Có P = x^2 +y^2-xy-x+y+1
=> 2A =2x^2 + 2y^2 -2xy -2x +2y+2 =(x^2 -2xy +y^2)+ (x^2 -2x+1) +(y^2 +2y +1) =(x-y)^2 +(x-1)^2 +(y+1)^2 >=0
=> Min A =0
Còn lại bạn tự giải nka!@
mk mới học lớp 6 nên chưa biết được nhiều nhak xin lỗi
Ta có: \(P=x^2+y^2-xy-x+y+1\)
\(\Rightarrow4P=4x^2+4y-4xy-4x+4y+4\)
\(=\left(4x^2-4xy+y^2\right)-2\left(2x-y\right)+3y^2+2y+4\)
\(=\left(2x-y\right)^2-2\left(2x-y\right)+1+3\left(y^2+\frac{2}{3}y+\frac{1}{9}\right)+\frac{8}{3}\)
\(=\left[\left(2x-y\right)-1\right]^2+3\left(y+\frac{1}{3}\right)^2+\frac{8}{3}\)
\(=\left(2x-y-1\right)^2+3\left(y+\frac{1}{3}\right)^2+\frac{8}{3}\)
Vậy min4P = \(\frac{8}{3}\Rightarrow minP=\frac{2}{3}\)
\(P_{min}=\frac{2}{3}\Leftrightarrow\hept{\begin{cases}y+\frac{1}{3}=0\\2x-y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=\frac{-1}{3}\\x=\frac{1}{3}\end{cases}}\)
\(A=4x^2+y^2+xy+4x+2y+3=4x^2+x\left(y+4\right)+\frac{\left(y+4\right)^2}{16}+y^2-\frac{\left(y+4\right)^2}{16}+2y+3\)\(=\left(2x+\frac{y+4}{4}\right)^2+\frac{16y^2-y^2-8y-16+32y+48}{16}=\left(2x+\frac{y+4}{4}\right)^2+\frac{15y^2+24y+32}{16}\)\(=\left(2x+\frac{y+4}{4}\right)^2+\frac{15\left(y^2+\frac{24}{15}y+\frac{16}{25}\right)+\frac{112}{5}}{16}=\left(2x+\frac{y+4}{4}\right)^2+\frac{15\left(y+\frac{4}{5}\right)^2+\frac{112}{5}}{16}\ge\frac{\frac{112}{5}}{16}=\frac{7}{5}\)Đẳng thức xảy ra khi \(\hept{\begin{cases}2x+\frac{y+4}{4}=0\\y+\frac{4}{5}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{2}{5}\\y=-\frac{4}{5}\end{cases}}\)
\(B=-x^2-y^2-2xy=-\left(x+y\right)^2\le0\)
Đẳng thức xảy ra khi x = -y
A = x2 + xy + y2 + 1
A = (x2 + xy + 1/4y2) + 3/4y2 + 1
A = (x + 1/2y)2 + 3/4y2 + 1 \(\ge\)1 với mọi x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+\frac{1}{2}y=0\\\frac{3}{4}y=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{1}{2}y\\y=0\end{cases}}\)<=> x = y = 0
Vậy MinA = 1 khi x = y = 0
ta biến đổi thành
x^3+y^3+xy=8-5xy
suy ra M_min thì 5xy_max
ta có 5xy <= \(5\left(\frac{x+y}{2}\right)^2\)
dấu "=" khi x=y=1
vật M_min=3
A=x^2-2x+y^2-2y-x-y+xy
A+3=x^2-2x+1+y^2-2y+1-x-y+xy+1=(x-1)^2+(y-1)^2+(x-1)(y-1)
dat x-1=a;y-1=b
=>A+3=a^2+b^2+ab =a^2+1/4b^2+ab+3/4b^2=(a+1/2b)^2+3/4b^2
=>A+3>=0 <=>x=1;y=1
=>Amin =-3<=> x=1;y=1
\(2A=2x^2+2y^2-2xy+2x+2y\)
\(2A=x^2-2xy+y^2+x^2+2x+1-1+y^2+2y+1-1\)
\(2A=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2+2y+1\right)-1-1\)
\(2A=\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2\ge-2\)
\(\Rightarrow2A\le-2\Rightarrow A\le-1\)
\(\Rightarrow A_{min}=-1\Leftrightarrow\hept{\begin{cases}x-y=0\\x+1=0\\y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=y\\x=-1\\y=-1\end{cases}\Rightarrow}x=y=-1}\)
CHÚC BẠN HỌC TỐT NHÉ
nha ! CẢM ƠN!!!!!