K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

Vì \(\left(2x+\frac{1}{4}\right)^4\ge0;\left|y+\frac{11}{3}\right|\ge0\)

         Suy ra:\(\left(2x+\frac{1}{4}\right)^4\ge0;\left|y+\frac{11}{3}\right|-1\ge-1\)

Vậy dấu = xảy ra khi \(\Rightarrow\orbr{\begin{cases}2x+\frac{1}{4}=0\\y+\frac{11}{3}=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{8}\\y=-\frac{11}{3}\end{cases}}\)

                    Min A=-1 khi \(x=-\frac{1}{8};y=-\frac{11}{3}\)

10 tháng 12 2017

các bạn thông cảm mình ko biết viết dấu giá trị tuyệt đối ở trong này 

2 tháng 10 2016

a) |x+3/4| >/ 0 

|x+3/4| + 1/2 >/ 1/2 

MinA= 1/2  <=>  x+3/4 =0 hay x= -3/4

b) 2|2x-4/3|  >/  0 

2|2x-4/3| -1 >/ -1

Min= -1 <=>  2|2x-4/3| = 0 hay x=2/3

Bài tiếp théo:

a) -2|x+4| \< 0 

-2|x+4| +1 \<  1

MaxA=1  <=> -2|x+4| = 0 hay = -4

b) -3|x-5|   \<  0

-3|x-5| + 11/4  \<  11/4 

MaxB=11/4  <=>  -3|x-5| = 0 hay x=-5  

23 tháng 4 2022

\(a.A=\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\forall x;y\) . " = " \(\Leftrightarrow x=2;y=-1\) 

b.\(B=7-\left(x+3\right)^2\le7\forall x\)  " = " \(\Leftrightarrow x=-3\)

c.\(C=\left|2x-3\right|-13\ge-13\forall x\)  " = " \(\Leftrightarrow x=\dfrac{3}{2}\)

d.\(D=11-\left|2x-13\right|\le11\forall x\)  " = " \(\Leftrightarrow x=\dfrac{13}{2}\)

23 tháng 4 2022

:o

15 tháng 12 2016

\(2x^2\ge0\Rightarrow2x^2+1\ge1\Rightarrow\left(2x^2+1\right)^4\ge1\Rightarrow\left(2x^2+1\right)^4-3\ge-2\)

\(\Rightarrow B\ge-2\)

\(\Rightarrow MIN_B=-2\Leftrightarrow\left(2x^2+1\right)^4=1\Leftrightarrow2x^2+1=1\Leftrightarrow2x^2=0\Leftrightarrow x=0\)

 

14 tháng 12 2020

a) Ta có: \(\left|1-2x\right|\ge0\forall x\)

\(\Rightarrow3\left|1-2x\right|\ge0\forall x\)

\(\Rightarrow3\left|1-2x\right|-5\ge-5\forall x\)

Dấu '=' xảy ra khi 1-2x=0

\(\Leftrightarrow2x=1\)

hay \(x=\dfrac{1}{2}\)

Vậy: Giá trị nhỏ nhất của biểu thức A=3|1-2x|-5 là -5 khi \(x=\dfrac{1}{2}\)

b) Ta có: \(2x^2\ge0\forall x\)

\(\Rightarrow2x^2+1\ge1\forall x\)

\(\Rightarrow\left(2x^2+1\right)^4\ge1\forall x\)

\(\Rightarrow\left(2x^2+1\right)^4-3\ge-2\forall x\)

Dấu '=' xảy ra khi x=0

Vậy: Giá trị nhỏ nhất của biểu thức \(B=\left(2x^2+1\right)^4-3\) là -2 khi x=0

14 tháng 12 2020

Cảm ơn bn nhìu!!!

3 tháng 7 2016

a) A = 3 * /1-2x/-5

Ta có:

3|1-2x| >/ 0

=>  3|1-2x| -5 >/  -5

=> GTNN của A là -5

b)-B=3/4-_ /2_3x/

Chả hiểu

c)C=(2x^2+1)^4-3

Ta có: 2x^2 >/ 0

2x^2 +1 >/ 1

(2x^2 +1)^4 >/ 1^4

(2x^2 +1)^4 -3  >/ 1 -3

(2x^2 +1)^4   >/  -2

Vậy GTNN của C là -2

d) D=/x-1/2/ + (y+7)^2+11

Ta có: 

|x-1/2| >/  0                                (1)

và (y+7)^2   >/ 0

=>  (y+7)^2 +11   >/   11                (2)

Cộng vế với vế (1) và (2) ta được:

|x-1/2| + (y+7)^2 +11      >/      11

Vậy GTNN của D là 11 

4 tháng 7 2016

cam on nhe !vui