Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
các bạn thông cảm mình ko biết viết dấu giá trị tuyệt đối ở trong này
a) |x+3/4| >/ 0
|x+3/4| + 1/2 >/ 1/2
MinA= 1/2 <=> x+3/4 =0 hay x= -3/4
b) 2|2x-4/3| >/ 0
2|2x-4/3| -1 >/ -1
MinB = -1 <=> 2|2x-4/3| = 0 hay x=2/3
Bài tiếp théo:
a) -2|x+4| \< 0
-2|x+4| +1 \< 1
MaxA=1 <=> -2|x+4| = 0 hay = -4
b) -3|x-5| \< 0
-3|x-5| + 11/4 \< 11/4
MaxB=11/4 <=> -3|x-5| = 0 hay x=-5
\(a.A=\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\forall x;y\) . " = " \(\Leftrightarrow x=2;y=-1\)
b.\(B=7-\left(x+3\right)^2\le7\forall x\) " = " \(\Leftrightarrow x=-3\)
c.\(C=\left|2x-3\right|-13\ge-13\forall x\) " = " \(\Leftrightarrow x=\dfrac{3}{2}\)
d.\(D=11-\left|2x-13\right|\le11\forall x\) " = " \(\Leftrightarrow x=\dfrac{13}{2}\)
Vì \(2x^2\ge0\Rightarrow2x^2+1\ge1\Rightarrow\left(2x^2+1\right)^4\ge1\Rightarrow\left(2x^2+1\right)^4-3\ge-2\)
\(\Rightarrow B\ge-2\)
\(\Rightarrow MIN_B=-2\Leftrightarrow\left(2x^2+1\right)^4=1\Leftrightarrow2x^2+1=1\Leftrightarrow2x^2=0\Leftrightarrow x=0\)
a) Ta có: \(\left|1-2x\right|\ge0\forall x\)
\(\Rightarrow3\left|1-2x\right|\ge0\forall x\)
\(\Rightarrow3\left|1-2x\right|-5\ge-5\forall x\)
Dấu '=' xảy ra khi 1-2x=0
\(\Leftrightarrow2x=1\)
hay \(x=\dfrac{1}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức A=3|1-2x|-5 là -5 khi \(x=\dfrac{1}{2}\)
b) Ta có: \(2x^2\ge0\forall x\)
\(\Rightarrow2x^2+1\ge1\forall x\)
\(\Rightarrow\left(2x^2+1\right)^4\ge1\forall x\)
\(\Rightarrow\left(2x^2+1\right)^4-3\ge-2\forall x\)
Dấu '=' xảy ra khi x=0
Vậy: Giá trị nhỏ nhất của biểu thức \(B=\left(2x^2+1\right)^4-3\) là -2 khi x=0
a) A = 3 * /1-2x/-5
Ta có:
3|1-2x| >/ 0
=> 3|1-2x| -5 >/ -5
=> GTNN của A là -5
b)-B=3/4-_ /2_3x/
Chả hiểu
c)C=(2x^2+1)^4-3
Ta có: 2x^2 >/ 0
2x^2 +1 >/ 1
(2x^2 +1)^4 >/ 1^4
(2x^2 +1)^4 -3 >/ 1 -3
(2x^2 +1)^4 >/ -2
Vậy GTNN của C là -2
d) D=/x-1/2/ + (y+7)^2+11
Ta có:
|x-1/2| >/ 0 (1)
và (y+7)^2 >/ 0
=> (y+7)^2 +11 >/ 11 (2)
Cộng vế với vế (1) và (2) ta được:
|x-1/2| + (y+7)^2 +11 >/ 11
Vậy GTNN của D là 11
Vì \(\left(2x+\frac{1}{4}\right)^4\ge0;\left|y+\frac{11}{3}\right|\ge0\)
Suy ra:\(\left(2x+\frac{1}{4}\right)^4\ge0;\left|y+\frac{11}{3}\right|-1\ge-1\)
Vậy dấu = xảy ra khi \(\Rightarrow\orbr{\begin{cases}2x+\frac{1}{4}=0\\y+\frac{11}{3}=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{8}\\y=-\frac{11}{3}\end{cases}}\)
Min A=-1 khi \(x=-\frac{1}{8};y=-\frac{11}{3}\)