Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.A=\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\forall x;y\) . " = " \(\Leftrightarrow x=2;y=-1\)
b.\(B=7-\left(x+3\right)^2\le7\forall x\) " = " \(\Leftrightarrow x=-3\)
c.\(C=\left|2x-3\right|-13\ge-13\forall x\) " = " \(\Leftrightarrow x=\dfrac{3}{2}\)
d.\(D=11-\left|2x-13\right|\le11\forall x\) " = " \(\Leftrightarrow x=\dfrac{13}{2}\)
a) Ta có: \(\left|1-2x\right|\ge0\forall x\)
\(\Rightarrow3\left|1-2x\right|\ge0\forall x\)
\(\Rightarrow3\left|1-2x\right|-5\ge-5\forall x\)
Dấu '=' xảy ra khi 1-2x=0
\(\Leftrightarrow2x=1\)
hay \(x=\dfrac{1}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức A=3|1-2x|-5 là -5 khi \(x=\dfrac{1}{2}\)
b) Ta có: \(2x^2\ge0\forall x\)
\(\Rightarrow2x^2+1\ge1\forall x\)
\(\Rightarrow\left(2x^2+1\right)^4\ge1\forall x\)
\(\Rightarrow\left(2x^2+1\right)^4-3\ge-2\forall x\)
Dấu '=' xảy ra khi x=0
Vậy: Giá trị nhỏ nhất của biểu thức \(B=\left(2x^2+1\right)^4-3\) là -2 khi x=0
a) |x+3/4| >/ 0
|x+3/4| + 1/2 >/ 1/2
MinA= 1/2 <=> x+3/4 =0 hay x= -3/4
b) 2|2x-4/3| >/ 0
2|2x-4/3| -1 >/ -1
MinB = -1 <=> 2|2x-4/3| = 0 hay x=2/3
Bài tiếp théo:
a) -2|x+4| \< 0
-2|x+4| +1 \< 1
MaxA=1 <=> -2|x+4| = 0 hay = -4
b) -3|x-5| \< 0
-3|x-5| + 11/4 \< 11/4
MaxB=11/4 <=> -3|x-5| = 0 hay x=-5
a) A = 3 * /1-2x/-5
Ta có:
3|1-2x| >/ 0
=> 3|1-2x| -5 >/ -5
=> GTNN của A là -5
b)-B=3/4-_ /2_3x/
Chả hiểu
c)C=(2x^2+1)^4-3
Ta có: 2x^2 >/ 0
2x^2 +1 >/ 1
(2x^2 +1)^4 >/ 1^4
(2x^2 +1)^4 -3 >/ 1 -3
(2x^2 +1)^4 >/ -2
Vậy GTNN của C là -2
d) D=/x-1/2/ + (y+7)^2+11
Ta có:
|x-1/2| >/ 0 (1)
và (y+7)^2 >/ 0
=> (y+7)^2 +11 >/ 11 (2)
Cộng vế với vế (1) và (2) ta được:
|x-1/2| + (y+7)^2 +11 >/ 11
Vậy GTNN của D là 11
Bài 2 :
a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)
Dấu ''='' xảy ra khi x = 2
b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)
Dấu ''='' xảy ra khi x = -1
Bài 1 :
a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)
c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)