K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

\(2x^2\ge0\Rightarrow2x^2+1\ge1\Rightarrow\left(2x^2+1\right)^4\ge1\Rightarrow\left(2x^2+1\right)^4-3\ge-2\)

\(\Rightarrow B\ge-2\)

\(\Rightarrow MIN_B=-2\Leftrightarrow\left(2x^2+1\right)^4=1\Leftrightarrow2x^2+1=1\Leftrightarrow2x^2=0\Leftrightarrow x=0\)

 

Bài 1: 

a: \(\left(2x-1\right)^4=16\)

=>2x-1=2 hoặc 2x-1=-2

=>2x=3 hoặc 2x=-1

=>x=3/2 hoặc x=-1/2

b: \(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}< =0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+7=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2x+7=y=2\cdot3+7=13\end{matrix}\right.\)

c: \(10800=2^4\cdot3^3\cdot5^2\)

mà \(2^{x+2}\cdot3^{x+1}\cdot5^x=10800\)

nên \(\left\{{}\begin{matrix}x+2=4\\x+1=3\\x=2\end{matrix}\right.\Leftrightarrow x=2\)

 

28 tháng 2 2019

a ) \(N=\left(x+1\right)^2+\left(y-\sqrt{2}^2\right)+2008\ge0+0+2008=2008\)

=> MinN đạt được bằng 2008 khi

\(\left\{{}\begin{matrix}x=-1\\y=\sqrt{2}\end{matrix}\right.\)

Thay vào M ,ta có

\(3x+\dfrac{x^2-y^2}{x^2+1}=-3+\dfrac{9-2}{1+1}=-3+3,5=0,5\)

b) Với x , y dương , ta được ngay ĐPCM

Với x âm , y âm , ta cũng được ĐPCM

Vậy nên xét trường hợp x,y trái dấu

\(2x^4y^2\ge0\)

\(7x^3y^5\le0\)

\(\Rightarrow2x^4y^2-7x^3y^5\ge0\) ( ĐPCM)

c)

\(2^{x+1}+2^{x+4}+2^{x+5}=2^5\cdot5^2\)

\(\Rightarrow2^{x+1}\left(1+2^3+2^4\right)=2^5\cdot5^2\)

\(\Rightarrow2^{x+1}\cdot5^2=2^5\cdot5^2\)

\(\Rightarrow2^{x+1}=2^5\Rightarrow x=4\)

30 tháng 9 2017

3/ ta để ý thấy ở số mũ sẽ có thừa số 1000-103=0

nên số mũ chắc chắn bằng 0

mà số nào mũ 0 cũng bằng 1 nên A=1

5/ vì |2/3x-1/6|> hoặc = 0

nên A nhỏ nhất khi |2/3x-6|=0

=>A=-1/3

6/ =>14x=10y=>x=10/14y

23x:2y=23x-y=256=28

=>3x-y=8

=>3.10/4y-y=8

=>6,5y=8

=>y=16/13

=>x=10/14y=10/14.16/13=80/91

8/106-57=56.26-56.5=56(26-5)=59.56 

có chứa thừa số 59 nên chia hết 59

4/ tính x 

sau đó thế vào tinh y,z