
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A = 9x2 - 6xy + 5y2 + 1 = (3x)2 + 2.3y + y2 + (2y)2 + 1 = ( 3x + y)2 + ( 2y )2 +1
mà ( 3x + y)2 > 0 và ( 2y )2 > 0
=> ( 3x + y )2 + (2y)2 + 1 > 0
Vậy gtnn của A là 1

a) Đặt A = \(3x^2+6x+4\)
\(A=3\left(x^2+2x+1\right)+1\)
\(A=3\left(x+1\right)^2+1\)
Mà \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow3\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow A\ge1\)
Dấu "=" xảy ra khi : \(x+1=0\Leftrightarrow x=-1\)
Vậy Min A =1 khi x = -1

B=\(3x^2-5x=3x^2-2.\sqrt{3}.\left(\frac{5}{\sqrt{3}}\right)x+\frac{25}{3}-\frac{25}{3}\)
B=\(\left(\sqrt{3}x-\frac{5}{\sqrt{3}}\right)^2-\frac{25}{3}\ge-\frac{25}{3}\)
B đạt GTNN là \(-\frac{25}{3}\) khi \(\sqrt{3}x=\frac{5}{\sqrt{3}}\)
\(x=\frac{5}{3}\)

\(A=\frac{15}{-3x^2-5x-12}=\frac{-15}{3x^2+5x+12}=\frac{-15}{3\left(x^2+\frac{5}{3}x+4\right)}\)
\(=\frac{-5}{x^2+\frac{5}{3}x+4}=\frac{-5}{\left(x^2+2.x\frac{5}{6}+\frac{25}{36}\right)+\frac{119}{36}}\)
\(=\frac{-5}{\left(x+\frac{5}{6}\right)^2+\frac{119}{36}}\)
Ta thấy \(\left(x+\frac{5}{6}\right)^2+\frac{119}{36}\ge\frac{119}{36}\)do đó \(\frac{1}{\left(x+\frac{5}{6}\right)^2+\frac{119}{36}}\le\frac{1}{\frac{119}{36}}=\frac{36}{119}\)
\(\Rightarrow\frac{-5}{\left(x+\frac{5}{6}\right)^2}+\frac{-5}{\frac{119}{36}}\ge-\frac{180}{119}\)
Dấu "=" xảy ra khi \(x+\frac{5}{6}=0\) \(\Leftrightarrow x=-\frac{5}{6}\)
Vậy GTNN của A = \(-\frac{180}{119}\)khi \(x=-\frac{5}{6}\)
k mình nha bn thanks nhìu <3

Giá trị nhỏ nhất:
\(A=x^2+4x+3=x^2+2.x.2+2^2-1=\left(x+2\right)^2-1\)
Vì \(\left(x+2\right)^2\ge0\)
nên \(\left(x+2\right)^2-1\ge-1\)
Vậy \(Min_A=-1\)khi \(x+2=0\Leftrightarrow x=-2\)
\(B=3x^2-5x+2=3\left(x^2-\frac{5}{3}x+\frac{2}{3}\right)=3\left[x^2-2.x.\frac{5}{6}+\left(\frac{5}{6}\right)^2-\frac{1}{36}\right]=3\left(x-\frac{5}{6}\right)^2-\frac{1}{12}\)
Vì \(\left(x-\frac{5}{6}\right)^2\ge0\)
nên \(3\left(x-\frac{5}{6}\right)^2\ge0\)
do đó \(3\left(x-\frac{5}{6}\right)^2-\frac{1}{12}\ge-\frac{1}{12}\)
Vậy \(Min_B=-\frac{1}{12}\)khi \(x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)
Giá trị lớn nhất:
\(C=2x-x^2=-\left(x^2-2x\right)=-\left(x^2-2.x+1-1\right)=-\left(x-1\right)^2+1\)
Vì \(\left(x-1\right)^2\ge0\)
nên \(-\left(x-1\right)^2\le0\)
do đó \(-\left(x-1\right)^2+1\le1\)
Vậy \(Max_C=1\)khi \(x-1=0\Leftrightarrow x=1\)
\(D=x-x^2+1=-\left(x^2-x+1\right)=-\left[x^2-2.x\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\)
nên \(-\left(x-\frac{1}{2}\right)^2\le0\)
do đó \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\)
Vậy \(Max_D=-\frac{3}{4}\)khi \(x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
\(C=3x^2-5x-8=3\left(x^2-\frac{5}{3}x+\frac{25}{36}\right)-\frac{121}{12}=3\left(x-\frac{5}{6}\right)^2-\frac{121}{12}\ge-\frac{121}{12}\)
Dấu "=" xảy ra khi x=5/6
Vậy Cmin=-121/12 khi x=5/6
\(C=3x^2-5x-8=3\left(x^2-2x.\frac{5}{6}+\frac{25}{36}\right)-\frac{25}{12}-8\)
\(=3\left(x-\frac{5}{6}\right)^2-\frac{121}{12}\)\(\Rightarrow C\ge-\frac{121}{12}\)(Do \(3\left(x-\frac{5}{6}\right)^2\ge0\))
Vậy \(Min_C=-\frac{121}{12}\). Dấu "=" xảy ra <=> \(x=\frac{5}{6}.\)