\(⋮\)B biết:

\(A=10x^2-7x-5\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2018

x = 2;5/2;11;41/2 

7 tháng 5 2018

\(A=10x^2-7x-5=\left(10x^2-15x\right)+8x-12+7=5x\left(2x-3\right)+4\left(2x-3\right)+7\)

\(A⋮B\Leftrightarrow7⋮2x+3\)

Rồi xét từng ước và tìm x 

30 tháng 1 2019

a) \(x^3-5x^2+8x-4\)

\(=x^3-2x^2-3x^2+6x+2x-4\)

\(=x^2\left(x-2\right)-3x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2-3x+2\right)\)

\(=\left(x-2\right)\left(x^2-x-2x+2\right)\)

\(=\left(x-2\right)\left[x\left(x-1\right)-2\left(x-1\right)\right]\)

\(=\left(x-2\right)\left(x-1\right)\left(x-2\right)\)

30 tháng 1 2019

b) \(A=10x^2-15x+8x-12+7\)

\(A=5x\left(2x-3\right)+4\left(2x-3\right)+7\)

\(A=\left(2x-3\right)\left(5x+4\right)+7\)

Dễ thấy \(\left(2x-3\right)\left(5x+4\right)⋮\left(2x-3\right)=B\)

Vậy để \(A⋮B\)thì \(7⋮\left(2x-3\right)\)

\(\Rightarrow2x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Rightarrow x\in\left\{2;1;5;-2\right\}\)

Vậy.......

24 tháng 12 2018

\(a,x^2-3x=0\)

\(\Rightarrow x\left(x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

- Thay \(x=0\) vào biểu thức A, ta được :

\(\frac{0-5}{0-4}=\frac{-5}{-4}=\frac{5}{4}\)

- Thay \(x=3\) vào biểu thức A, ta được :  

\(\frac{3-5}{3-4}=\frac{-2}{-1}=2\)

24 tháng 12 2018

\(b,B=\frac{x+5}{2x}-\frac{x-6}{5-x}-\frac{2x^2-2x-50}{2x^2-10x}\)

\(=\frac{x+5}{2x}+\frac{x-6}{x-5}+\frac{-\left(2x^2-2x-50\right)}{2x\left(x-5\right)}\)

\(=\frac{\left(x+5\right)\left(x-5\right)}{2x\left(x-5\right)}+\frac{2x\left(x-6\right)}{2x\left(x-5\right)}+\frac{-2x^2+2x+50}{2x\left(x-5\right)}\)

\(=\frac{x^2-25+2x^2-12x-2x^2+2x+50}{2x\left(x-5\right)}\)

\(=\frac{x^2-10x+25}{2x\left(x-5\right)}=\frac{\left(x-5\right)^2}{2x\left(x-5\right)}=\frac{x-5}{2x}\)

25 tháng 4 2021
Bài giải đây nha, có thể trình bày theo ý bạn

Bài tập Tất cả

10 tháng 4 2020

a) A= \(\frac{3x^2+5x-2}{3x^2-7x+2}=0\)

\(ĐK:3x^2-7x+2\ne0\)

\(\Leftrightarrow\orbr{\begin{cases}x\ne\frac{1}{3}\\x\ne2\end{cases}\left(^∗\right)}\)

=> 3x+ 5x + 2 =0

<=> 3x2 + 3x + 2x +2 = 0

<=> 3x .( x + 1 ) + 2 .( x + 1 ) =0

<=> (  x + 1 )(3x + 2 ) =0

<=> \(\orbr{\begin{cases}x+1=0\\3x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{-2}{3}\left(t/m\left(^∗\right)\right)\end{cases}}}\)

Vậy x = -2/3 

b) \(B=\frac{2x^2+10x+12}{x^3-4x}=0\left(ĐK:x\ne0;x^2\ne4\Leftrightarrow x\ne0;x\ne\pm2\right)\)

<=> 2x2+ 10x + 12 = 0

<=> x2 + 5x+ 6 =0

<=> ( x + 2 ) ( x + 3 ) =0\(\Leftrightarrow\orbr{\begin{cases}x=-2\left(L\right)\\x=-3\left(t/m\right)\end{cases}}\) 

Vậy x = -3 

c)\(C=\frac{x^3+x^2-x-1}{x^3+2x-5}=0\)                         \(ĐK:x^3+2x-5\ne0\left(^∗\right)\)

<=> x3 + x2 -x -1 =0

<=> ( x - 1 )(x2 + 2x + 1 ) 

<=> ( x-1 ) (x+1)2 = 0

<=> \(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(t/m\left(^∗\right)\right)\\x=-1\left(t/m\left(^∗\right)\right)\end{cases}}}\)

Vậy x = { 1 ; -1 }

11 tháng 4 2020

a) A = \(\frac{3x^2+5x-2}{3x^2-7x+2}=0\) (ĐKXĐ: x khác 1/3, x khác 2)

<=> 3x^2 + 5x - 2 = 0

<=> (3x - 1)(x + 2) = 0

<=> 3x - 1 = 0 hoặc x + 2 = 0

<=> 3x = 1 hoặc x = -2

<=> x = 1/3 (ktm) hoặc x = -2 (tm)

=> x = -2

b) B = \(\frac{2x^2+10x+12}{x^3-4x}=0\) (ĐKXĐ: x khác 0, x khác +-2)

<=> \(\frac{2\left(x^2+5x+6\right)}{x\left(x^2-4\right)}=0\)

<=> \(\frac{2\left(x+2\right)\left(x+3\right)}{x\left(x-2\right)\left(x+2\right)}=0\)

<=> \(\frac{2\left(x+3\right)}{x\left(x-2\right)}=0\)

<=> 2(x + 3) = 0

<=> x + 3 = 0

<=> x = -3

c) C = \(\frac{x^3+x^2-x-1}{x^3+2x-5}=0\) (ĐKXĐ: x khác x^3 + 2x - 5)

<=> \(\frac{x^2\left(x+1\right)-\left(x+1\right)}{x^3+2x-5}=0\)

<=> \(\frac{\left(x+1\right)\left(x^2-1\right)}{x^3+2x-5}=0\)

<=> \(\frac{\left(x+1\right)\left(x-1\right)\left(x+1\right)}{x^3+2x-5}=0\)

<=> (x + 1)(x - 1) = 0

<=> x + 1 = 0 hoặc x - 1 = 0

<=> x = -1 hoặc x = 1

12 tháng 2 2017

đk: x khác +-3/2

các gt x: 1,4,6,9

12 tháng 2 2017

a) ĐKXĐ của A   : \(\hept{\begin{cases}2x-3\ne0\\2x+3\ne0\\9-4x^2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}2x\ne3\\2x\ne-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne\frac{3}{2}\\x\ne-\frac{3}{2}\end{cases}}}\) 

=> Giá trị của biểu thức A được xác định khi x khác 3/2 và x khác -3/2

        \(A=\frac{5}{2x-3}+\frac{2}{2x+3}-\frac{2x+5}{9-4x^2}\)

          \(=\frac{5}{2x-3}+\frac{2}{2x+3}+\frac{2x+5}{\left(2x+3\right)\left(2x-3\right)}\)

         \(=\frac{5.\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{2.\left(2x-3\right)}{\left(2x+3\right)\left(2x-3\right)}+\frac{2x+5}{\left(2x+3\right)\left(2x-3\right)}\)

         \(=\frac{10x+15+4x-6+2x+5}{\left(2x+3\right)\left(2x-3\right)}\)

     ..... chắc tôi làm sai oy !

9 tháng 1 2020

Đk : \(x\ne5;x\ne0;x\ne4\)

a) ta có:

\(x^2-3x=0\)

\(\Leftrightarrow x\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(KTM\right)\\x=3\left(TM\right)\end{cases}}\)

Thay x= 3 vào biểu thức A , ta được :

\(A=\frac{3-5}{3-4}=\frac{-2}{-1}=2\)

vậy ..............

b) \(B=\frac{x+5}{2x}-\frac{x-6}{5-x}-\frac{2x^2-2x-50}{2x^2-10x}\)

\(B=\frac{x+5}{2x}+\frac{6-x}{x-5}-\frac{2x^2-2x-50}{2x\left(x-5\right)}\)

\(B=\frac{\left(x-5\right)\left(x+5\right)+2x\left(6-x\right)-2x^2+2x+50}{2x\left(x-5\right)}\)

\(B=\frac{x^2-25+12x-2x^2-2x^2+2x+50}{2x\left(x-5\right)}\)

\(B=\frac{-3x^2+25+14x}{2x\left(x-5\right)}\)

c) Ta có :

\(P=A.B\)

\(P=\frac{x-5}{x-4}.\frac{-3x^2+25+14x}{2x\left(x-5\right)}\)

\(P=\frac{-3x^2+25+14x}{2x\left(x-4\right)}\)

\(P=\frac{-3x^2+25+14x}{2x^2-8x}\)

29 tháng 4 2020

a) \(A=\frac{x}{x-5}-\frac{10x}{x^2-25}-\frac{5}{x+5}\left(x\ne\pm5\right)\)

\(=\frac{x}{x-5}-\frac{10x}{\left(x-5\right)\left(x+5\right)}-\frac{5}{x+5}\)

\(=\frac{x\left(x+5\right)}{x\left(x-5\right)}-\frac{10x}{\left(x-5\right)\left(x+5\right)}-\frac{5\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}\)

\(=\frac{x^2+5x}{\left(x-5\right)\left(x+5\right)}-\frac{10x}{\left(x-5\right)\left(x+5\right)}-\frac{5x-25}{\left(x-5\right)\left(x+5\right)}\)

\(=\frac{x^2+5x-10x-5x+25}{\left(x-5\right)\left(x+5\right)}\)

\(=\frac{x^2-10x+25}{\left(x-5\right)\left(x+5\right)}=\frac{\left(x-5\right)^2}{\left(x-5\right)\left(x+5\right)}=\frac{x-5}{x+5}\)

Vậy \(A=\frac{x-5}{x+5}\left(x\ne\pm5\right)\)

b) Ta có \(A=\frac{x-5}{x+5}\left(x\ne\pm5\right)\)

Để A nhận giá trị nguyên thì \(\frac{x-5}{x+5}\)phải nhận giá trị nguyên

=> \(x-5⋮\)x+5

Ta có x-5=(x+5)-10

Thấy x+5 \(⋮\)x+5 => 10 \(⋮\)x+5 thì \(\left(x+5\right)-10⋮x+5\)

mà x nguyên => x+5 nguyên 

=> x+5\(\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)

ta có bảng

x+5-10-5-2-112510
x-15-10-7-6-4-305
ĐCĐKtmtmtmtmtmtmtmktm

Vậy x={-15;-10;-7;-6;-4;-3;0} thì \(A=\frac{x-5}{x+5}\)nhận giá trị nguyên