Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x-1}{2x+3}=\frac{2x+3-4}{2x+3}=1-\frac{4}{2x+3}\)
để 2x-1/2x+3 có giá trị nguyên thì4 phải chia hết cho 2x+3
\(\Rightarrow2x+3\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow2x\in\left\{-7;-5;-4;-2;-1;1\right\}\)
\(\Rightarrow x\left\{-2;-1\right\}\)
Để \(\frac{2x-1}{2x+3}\) đạt giá trị nguyên
<=> 2x-1 chia hết cho 2x+3
=> (2x+3)-4 chia hết cho 2x+3
Để (2x+3)-4 chia hết cho 2x+3
<=> 2x+3 chia hết cho 2x+3
4 chia hết cho 2x+3
Vì 4 chia hết cho 2x+3 => 2x+3 thuộc Ư(4)={-4;-2;-1;1;2;4}
Ta có bảng sau:
2x+3 | -4 | -2 | -1 | 1 | 2 | 4 |
x | Loại | Loại | -2 | -1 | Loại | Loại |
Vậy các giá trị nguyên n thỏa mãn là: -2;-1
k nha các bạn
Mình có góp ý thế này nhé Trịnh Thị Thúy Vân : Vì 2x + 3 là số lẻ nên ta chỉ xét trường hợp 1 và -1
a) để A là phân số thì
- 2x+5 là số nguyên => 2x+5 nguyên với mọi x nguyên
- 2x-1 nguyên va 2x-1#0 => 2x-1 nguyên và 2x-1#0 với mọi x nguyên
vậy A là phân số với mọi x nguyên.
b) nhận thấy 2x -1 là số lẻ nên
(1) <=> A = 1 + 6/(2x-1) để A nguyên thì 1 + 6/(2x-1) nguyên <=> 6/(2x-1) nguyên <=>
<=> 6 chia hết cho (2x-1) hay (2x-1) là ước lẻ của 6 vậy:
(2x-1) = { 1 ; 3 ; -1 ; -3 } (*)<=> 2x = { 2 ; 4 ; 0 ; -2 } <=>
<=> x = { 1 ; 2 ; 0 ; -1}
vì x nguyên nên x chỉ lấy các giá trị : x = {1 ; 2 ; -1}
c) A = 1 + 6/(2x-1) để Amax thì 1 + 6/(2x-1) max <=> 6/(2x-1) max
vì 6 > 0 nên để 6/(2x-1)max thì (2x-1) là ƯSC dương lẻ nhỏ nhất của 6 với x nguyên dương
<=> 2x-1 = 1 (theo (*)) <=> x = 1 khi đó Amax = 1 + 6/1 = 7
để Amin thì 1 + 6/(2x-1)min <=> 6/(2x-1)min
vì 6 > 0 nên để 6/(2x-1)min thì (2x-1) là ƯSC âm lẻ lớn nhất của 6 với x nguyên âm=> (2x-1) = -1
nhưng (2x-1) = -1 (theo (*)) lại ứng với x = 0 ma x nguyên nên loại trường hợp này nên:
2x-1 = -3 (theo (*)) <=> x = -1 khi đó Amin = 1 + 6/(-1) = -5.
Để \(\frac{x+5}{2x-2}\inℤ\) thì \(\left(x+5\right)⋮\left(2x-2\right)\)
\(\Leftrightarrow\left[2\left(x+5\right)\right]⋮\left(2x-2\right)\)
\(\Leftrightarrow\left[2x+10\right]⋮\left(2x-2\right)\)
\(\Leftrightarrow\left[2x-2+10\right]⋮\left(2x-2\right)\)
Vì \(\left[2x-2\right]⋮\left(2x-2\right)\) nên \(10⋮\left(2x-2\right)\)
\(\Leftrightarrow\left(2x-2\right)\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
ĐKXĐ : \(x\ne1\)
\(\frac{x+5}{2x-2}=\frac{x-1+6}{2\left(x-1\right)}=\frac{2-1}{2\left(x-1\right)}+\frac{6}{2\left(x-1\right)}=\frac{1}{2}+\frac{3}{x-1}\)
\(\Rightarrowđể\frac{x+3}{2x-2}\)có giá trị nguyên thì \(x-1\inƯ\left(3\right)\Rightarrow x-1\in\left\{-1;-1;1;3\right\}\)
vậy để \(\frac{x+5}{2x-2}\)có giá trị nguyên thì \(x\in\left\{-2;0;2;4\right\}\)
ta có:
2x-1/2x+3=2x+3-4/2x+3=1- 4/2x+3
Để 2x-1/2x+3 nguyên <=> 4 chia hết 2x+3 <=> 2x+3 là ước của 4
=> 2x + 3 = 1 => x =-1
2x+3=-1 => x=-2
2x+3=2 => x =-1/2(L)
2x+3=-2=> x=-5/2(L)
2x+3=4=> x =1/2(L)
2x+3=-4=> x = -7/2(L)
********* nhé
Ta có: \(\frac{2x-1}{2x+3}=\frac{2x+3-4}{2x+3}=\frac{2x+3}{2x+3}-\frac{4}{2x+3}=1-\frac{4}{2x+3}\)
Để phân số \(\frac{2x-1}{2x+3}\) là số nguyên \(\Leftrightarrow\) \(\frac{4}{2x+3}\) là số nguyên \(\Leftrightarrow\) 2x + 3 \(\in\) Ư(4)
\(\Leftrightarrow\) 2x + 3 \(\in\) {-4; -2; -1; 1; 2; 4}
\(\Rightarrow\) 2x \(\in\) {-4; -2}
\(\Rightarrow\) x \(\in\) {-2; -1}