Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{n+10}{2n-8}=\frac{n-4+14}{2\left(n-4\right)}=\frac{\left(n-4\right)}{2\left(n-4\right)}+\frac{14}{2\left(n-4\right)}\)
\(=\frac{1}{2}+\frac{14}{2n-8}\)
\(\Rightarrow2n-8\in U\left(14\right)=\left\{1;2;7;14;-1;-2;-7;-14\right\}\)
\(\Rightarrow2n\in\left\{9;10;15;22;7;6;1;-6\right\}\)
\(\Rightarrow n\in\left\{5;11;3\right\}\)( VÌ số tự nhiên n có giá trị là 1 số nguyên)
đẻ A là số nguyên
=> (n+10) chia hết cho (2n-8)
vì (n+10) chia hết cho 2n+8
=> 2(n+10) chia hết cho 2n+8 hay 2n+20 chia hết cho 2n+8
vì 2n+20 chia hết cho 2n+8
và 2n+8 chia hết cho 2n+8
=> (2n+20) - (2n+8) chia hết cho 2n+8
hay 12 chia hết cho 2n+8
=> 2N+8 THUỘC ( 1,2,3,4,6,12)
=> 2N THUỘC (-7,-6,-5,-4,-2,4) VÌ 2N LÀ SỐ CHẴN
=>2N THUỘC (-6,-4,-2,4)
=> N THUỘC (-3,-2,-1,2)
VẬY N THUỘC (-3,-2,-1,2)
Ta có: theo bài ra \(\frac{2n+3}{4n+8}\)= \(\frac{1}{4}\)<=> 4(2n+3) = 4n+8 <=> 8n+12 = 4n+8 <=> 8n-4n = 8-12 <=> 4n = -1 <=> n = -1
gọi d là ước chung lớn nhất của 2n+3 và 4n+8.
suy ra ((4n+8) - (2n+3)) chia hết cho d
((4n+8) - (2n+3) + (2n+3)) chia hết cho d
(4n-8 - 2n-3 - 2n-3) chia hết cho d
2 chia hết cho d, suy ra d nhận giá trị 1;2. Mà d không thể bằng 2 (do 2n+3 lẻ với mọi số tự nhiên) nên d = 1. Vậy phân số đã cho tối giản.
\(a)\) Ta có :
\(A=\frac{2n-2}{2n+4}=\frac{2n+4-6}{2n+4}=\frac{2n+4}{2n+4}-\frac{6}{2n+4}=1-\frac{6}{2n+4}\)
Để A là số nguyên thì \(\frac{6}{2n+4}\) phải là số nguyên hay nói cách khác \(6⋮\left(2n+4\right)\)
\(\Rightarrow\)\(\left(2n+4\right)\inƯ\left(6\right)\)
Mà \(Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
Suy ra :
\(2n+4\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(3\) | \(-3\) | \(6\) | \(-6\) |
\(n\) | \(\frac{-3}{2}\) | \(\frac{-5}{2}\) | \(-1\) | \(-3\) | \(\frac{-1}{2}\) | \(\frac{-7}{2}\) | \(1\) | \(-5\) |
Mà \(n\inℤ\) nên \(n\in\left\{-5;-3;-1;1\right\}\)
Vậy \(n\in\left\{-5;-3;-1;1\right\}\)
Chúc bạn học tốt ~
b)Gọi d = ƯCLN(a, a+b) (d thuộc N*)
=> a chia hết cho d; a + b chia hết cho d
=> a chia hết cho d; b chia hết cho d
Mà phân số a/b tối giản => d = 1
=> ƯCLN(a, a+b) = 1
=> phân số a/a+b tối giản
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
Để 2n - 3 / 2n + 2 là phân số tối giản thì ƯC ( 2n - 3 , 2n + 2 ) = 1
=> 2n - 3 và 2n + 2 là hai số nguyên tố cùng nhau
Làm đến đây mik xin chịu
mình nghĩ bạn sai đề mình sửa 2n-17 thành 2n+17
Ta có d thuộc UCLN(n-8,2n-17)
suy ra: n-8 chia hết d và 2n +17 chia hết d
= 2(n-8) chia hết d và 2n +17 chia hết d
Ta tính hiệu của chúng
2(n-8) --- 2n + 17
=2n -16 ---- 2n +17
=(2n+-2n) ---(-16 + 17)
=0+1=1
suy ra UCLN của chúng là 1
phân số tối giản(đpcm)
tam giác=tác giam; tác=đánh, giam=nhốt; đánh nhốt=đốt nhánh; đốt=thiêu, nhánh=cành; thiêu cành=thanh kiều. Cô giáo tên Thanh Kiều