\(\frac{n-8}{2n-17}\)là phân số tối giản

bạn nà...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

mình nghĩ bạn sai đề  mình sửa 2n-17 thành 2n+17

Ta có d thuộc UCLN(n-8,2n-17)

suy ra:    n-8  chia hết d                      và                  2n +17 chia hết d

        =  2(n-8) chia hết d                      và                  2n +17 chia hết d

Ta tính hiệu của chúng

                           2(n-8)       ---          2n + 17

                      =2n -16        ----       2n +17

                     =(2n+-2n)       ---(-16 + 17)

                     =0+1=1

suy ra UCLN của chúng là 1

phân số tối giản(đpcm)

3 tháng 7 2017

tam giác=tác giam; tác=đánh, giam=nhốt; đánh nhốt=đốt nhánh; đốt=thiêu, nhánh=cành; thiêu cành=thanh kiều. Cô giáo tên Thanh Kiều

4 tháng 4 2019

\(A=\frac{n+10}{2n-8}=\frac{n-4+14}{2\left(n-4\right)}=\frac{\left(n-4\right)}{2\left(n-4\right)}+\frac{14}{2\left(n-4\right)}\)

\(=\frac{1}{2}+\frac{14}{2n-8}\)

\(\Rightarrow2n-8\in U\left(14\right)=\left\{1;2;7;14;-1;-2;-7;-14\right\}\)

\(\Rightarrow2n\in\left\{9;10;15;22;7;6;1;-6\right\}\)

\(\Rightarrow n\in\left\{5;11;3\right\}\)( VÌ số tự nhiên n có giá trị là 1 số nguyên)

4 tháng 4 2019

đẻ A là số nguyên  

=> (n+10) chia hết cho (2n-8)

vì (n+10) chia hết cho 2n+8

=> 2(n+10) chia hết cho 2n+8 hay 2n+20 chia hết cho 2n+8

vì 2n+20 chia hết cho 2n+8

và 2n+8  chia hết cho 2n+8

=> (2n+20) - (2n+8) chia hết cho 2n+8

hay 12 chia hết cho 2n+8 

=> 2N+8 THUỘC ( 1,2,3,4,6,12)

=> 2N THUỘC (-7,-6,-5,-4,-2,4) VÌ 2N LÀ SỐ CHẴN  

=>2N THUỘC (-6,-4,-2,4)

=> N THUỘC (-3,-2,-1,2)

VẬY N THUỘC (-3,-2,-1,2)

13 tháng 3 2018

Ta có: theo bài ra \(\frac{2n+3}{4n+8}\)\(\frac{1}{4}\)<=> 4(2n+3) = 4n+8 <=> 8n+12 = 4n+8 <=> 8n-4n = 8-12 <=> 4n = -1 <=> n = -1

         gọi d là ước chung lớn nhất của 2n+3 và 4n+8.

suy ra ((4n+8) - (2n+3)) chia hết cho d

((4n+8) - (2n+3) + (2n+3)) chia hết cho d

(4n-8 - 2n-3 - 2n-3) chia hết cho d

2 chia hết cho d, suy ra d nhận giá trị 1;2. Mà d không thể bằng 2 (do 2n+3 lẻ với mọi số tự nhiên) nên d = 1. Vậy phân số đã cho tối giản.

22 tháng 2 2020

thì nó là tối giản rồi còn gì

22 tháng 2 2020

nè mình

12 tháng 3 2018

\(a)\) Ta có : 

\(A=\frac{2n-2}{2n+4}=\frac{2n+4-6}{2n+4}=\frac{2n+4}{2n+4}-\frac{6}{2n+4}=1-\frac{6}{2n+4}\)

Để A là số nguyên thì \(\frac{6}{2n+4}\) phải là số nguyên hay nói cách khác \(6⋮\left(2n+4\right)\)

\(\Rightarrow\)\(\left(2n+4\right)\inƯ\left(6\right)\)

Mà \(Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

Suy ra : 

\(2n+4\)\(1\)\(-1\)\(2\)\(-2\)\(3\)\(-3\)\(6\)\(-6\)
\(n\)\(\frac{-3}{2}\)\(\frac{-5}{2}\)\(-1\)\(-3\)\(\frac{-1}{2}\)\(\frac{-7}{2}\)\(1\)\(-5\)

Mà \(n\inℤ\) nên \(n\in\left\{-5;-3;-1;1\right\}\)

Vậy \(n\in\left\{-5;-3;-1;1\right\}\)

Chúc bạn học tốt ~

12 tháng 3 2018

b)Gọi d = ƯCLN(a, a+b) (d thuộc N*)
=> a chia hết cho d; a + b chia hết cho d
=> a chia hết cho d; b chia hết cho d
Mà phân số a/b tối giản => d = 1
=> ƯCLN(a, a+b) = 1
=> phân số a/a+b tối giản

15 tháng 11 2023

Vũ™©®×÷|

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

4 tháng 2 2016

​Để 2n - 3 / 2n + 2 là phân số tối giản thì ƯC ( 2n - 3 , 2n + 2 ) = 1

​=> 2n - 3 và 2n + 2 là hai số nguyên tố cùng nhau

 

​Làm đến đây mik xin chịu