Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bo may la binh day k di hieu ashdbfgbgygygggydfsghuyfhdguuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu3
bài 1 :
a) ta có : \(\left(x-3\right)\left[x^2+\left(x-1\right)x+k^2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\2x^2-x+k=0\end{matrix}\right.\) để phương trình có 3 nghiệm phân biệt
\(\Leftrightarrow2x^2-x+k\) có 2 nghiệm và 2 nghiệm này phải khác 3
\(\Leftrightarrow\left\{{}\begin{matrix}2.3^2-3+k\ne0\\1^2-4.2.k>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}k\ne-15\\k< \dfrac{1}{8}\end{matrix}\right.\)
vậy ...
b) tương tự
2) sữa đề
ta có : \(x^2+3\left(m-3x^2\right)^2=m\)
\(\Leftrightarrow x^2+3\left(m^2-6mx^2+9x^4\right)=m\)
\(\Leftrightarrow27x^4-\left(18m-1\right)x^2-3m^2-m=0\)
phương trình có nghiệm khi phương trình \(27t^2-\left(18m-1\right)t-3m^2-m=0\) có ít nhất 1 nghiệm dương
->...
a) \(\left(x^2-2\right)\left(k-1\right)x+2k-5=0\)
\(\Delta=\left(k-1\right)^2-2k+5\)
\(=k^2-4x+6=\left(k-2\right)^2+2>0\)
=> PT luôn có nghiệm với mọi k
Bài 1 :
Theo định lý vi-et ta có:
{xy=a+bx+y=ab{xy=a+bx+y=ab (với x,y là nghiệm của phương trình)
Giả sử ab>xy Suy ra x+y>xy suy ra x(1-y)+y-1>-1 suy ra (x-1)(y-1)<1 suy ra x=1 hoặc y=1
Suy ra 1-ab+a+b=0(vì tổng các hệ số =0) suy ra a=(1+b)/(b-1) ( đến đoạn này là ok)
Giả sử xy>ab Suy ra a+b>ab suy ra a=1 hoặc b=1
Với a=1 suy ra điều kiện để pt có nghiêm nguyên là: b2−4(1+b)=k2⇒(b−2−k)(b−2+k)=8b2−4(1+b)=k2⇒(b−2−k)(b−2+k)=8 (đến đoạn này ok)
Trường hợp còn lại CM tương tự
Bài 2 :
Để phương trình có ít nhất một nghiệm thì:
Δ=(2p−1)2−4⋅3⋅(p2−6p+11)≥0
=−8p2+68p−131 (1)
Giải pt (1) ta được:
p=17±3√34
Anh Phuong
Bạn bấm mode-5-3 để tìm min trong trường hợp này ko áp dụng được, vì nếu phân tích theo mode 5-3 \(2k^2+4k-3=2\left(k+1\right)^2-5\ge-5\) thì dấu "=" xảy ra khi \(k=-1\) ko thỏa mãn điều kiện delta \(k\ge\frac{7}{4}\)
Theo lý thuyết hàm bậc 2 thì \(2k^2+4k-2\) đồng biến khi \(k\ge-1\) nghĩa là với \(k\ge\frac{7}{4}\) thì chắc chắn A min sẽ xảy ra khi \(k=\frac{7}{4}\)
Thay \(k=\frac{7}{4}\) vào tính được \(A=\frac{81}{8}\)
Do đó ta thêm bớt: \(A=\left(2k^2+4k-\frac{105}{8}\right)+\frac{81}{8}\)
Và bây giờ chỉ việc phân tích ngoặc đầu thành nhân tử bằng máy tính dễ dàng, máy tính cho 2 nghiệm \(\frac{7}{4};-\frac{15}{4}\), do đó:
\(A=2\left(k-\frac{7}{4}\right)\left(k+\frac{15}{4}\right)+\frac{81}{8}\)
Do \(k\ge\frac{7}{4}\Rightarrow\left\{{}\begin{matrix}k-\frac{7}{4}\ge0\\k+\frac{15}{4}>0\end{matrix}\right.\) \(\Rightarrow2\left(k-\frac{7}{4}\right)\left(k+\frac{15}{4}\right)\ge0\)
\(\Rightarrow A\ge0+\frac{81}{8}=\frac{81}{8}\)
Khi có điều kiện delta, thì luôn phải chú ý điểm rơi xem có thỏa mãn điều kiện hay ko, nếu không thì phải tìm cách tách riêng như trong bài này, nếu ko kết quả sẽ sai hết.
\(\Delta=4k^2+4k+1-4k^2-8=4k-7\ge0\Rightarrow k\ge\frac{7}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2k+1\\x_1x_2=k^2+2\end{matrix}\right.\)
a/ Kết hợp Viet và đề bài ta có hệ: \(\left\{{}\begin{matrix}x_1+x_2=2k+1\\x_1=2x_2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{2\left(2k+1\right)}{3}\\x_2=\frac{2k+1}{3}\end{matrix}\right.\)
\(\Rightarrow\frac{2\left(2k+1\right)}{3}.\frac{\left(2k+1\right)}{3}=k^2+2\Leftrightarrow2\left(2k+1\right)^2=9\left(k^2+2\right)\)
\(\Leftrightarrow k^2-8k+16=0\Rightarrow k=4\)
b/ \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\left(2k+1\right)^2-2\left(k^2+2\right)=2k^2+4k-3\)
\(=2\left(k-\frac{7}{4}\right)\left(k+\frac{15}{4}\right)+\frac{81}{8}\ge\frac{81}{8}\)
\(\Rightarrow A_{min}=\frac{81}{8}\) khi \(k=\frac{7}{4}\)
\(x^2-2\left(m-1\right)x-3-m=0\) \(\left(1\right)\)
từ \(\left(1\right)\) ta có \(\Delta'=\left[-\left(m-1\right)\right]^2-\left(-3-m\right)\)
\(\Delta'=m^2-2m+1+m+3\)
\(\Delta'=m^2-m+4\)
Theo talet ta có:
\(\hept{\begin{cases}x1+x2=-\frac{b}{a}=m-2\left(1\right)\\x1.x2=\frac{c}{a}=-m^2+3m-4\left(2\right)\end{cases}}\)
Theo đề bài ta có: \(\left|\frac{x1}{x2}\right|=2\)
TH1: \(x1=2.x2\)
Thay vào (1) ta đc: \(3.x2=m-2\Leftrightarrow x2=\frac{m-2}{3}\)
Thay \(x1=2.\frac{m-2}{3};x2=\frac{m-2}{3}\)vào (2) ta đc:
\(\frac{2.\left(m-2\right)^2}{9}=-m^2+3m-4\)(vô nghiệm)
TH2: \(x1=-2.x2\)
Thay vào (1) ta đc: \(-x2=m-2\Leftrightarrow x2=2-m\)
Thay \(x1=-2.\left(2-m\right);x2=2-m\)vào (2) ta đc:
\(-2\left(m-2\right)^2=-m^2+3m-4\Leftrightarrow\orbr{\begin{cases}m=4\\m=1\end{cases}}\)
Vậy m=4 hoặc m=1
Giải hệ pt này là ra
\(\hept{\begin{cases}x_1+x_2=m-2\\x_1.x_2=-m^2+3m-4\\\left|\frac{x_1}{x_2}\right|=2\end{cases}}\)
Với $k=0$ ta có:$x=-2$.Suy ra $k=0$ thỏa.
Với $k \ne 0$:
$\Delta =(1-2k)^2-4k(k-2)=4k+1$
Để phương trình đã cho có nghiệm hữu tỉ thì $\Delta$ phải là một số chính phương.
Do $4k+1$ là số lẻ nên ta giả sử:
$4k+1=(2m+1)^2=4m^2+4m+1\Rightarrow k=m(m+1)$
Do $k \in Z$ và kết hợp 2 trường hợp trên ta suy ra:
$k$ là tích của hai số nguyên liên tiếp.