Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đặt:
\(A=\frac{42-x}{x-15}=1+\frac{27}{x-15}\)
Để cho A nguyên ti (x-15) phải là U nguyên của 27
Để A có GTNN thì (x-15) phải là số âm lớn nhất
Từ 2 cái này ta suy ra x-15 phải là ước nguyên âm lớn nhất của 27
\(\Rightarrow x-15=1\)
\(\Rightarrow x=14\)
\(\Rightarrow A=1+\frac{27}{-1}=-28\)
C=2x-5/x=2x/x-5/x=2-5/x.
Để C min =>5/x max.
Để 5/x max =>5/x>0.
Mà 5>0=>x>0.
Để 5/x max =>x min(xEN).
=>x=1.
=>C=-3.
Vậy với x=1=>Cmin.
Chị ơi k cho em.Em học lớp 6 nha.
Bài giải
a, Ta có : \(A=\left|x-1\right|+\left|x-2\right|\)
* Với x < 2 thì :
\(A=-\left(x-1\right)-\left(x-2\right)\)
\(A=-x+1-x+2\)
\(A=-2x+3\)
* Với x > 2 thì :
\(A=x-1+x-2\)
\(A=2x-3\)
b, Ta có :
\(B=\frac{42-y}{y-15}=\frac{15-y+27}{y-15}=\frac{15-y}{y-15}+\frac{27}{y-15}=-1+\frac{27}{y-15}\)
B đạt GT nguyên NN khi \(\frac{27}{y-15}\) đạt GT nguyên NN
\(\Rightarrow\text{ }y\ne15\)
Ta xét 2 trường hợp :
* Với y < 15 => \(\frac{27}{y-15}< 0\text{ }\Rightarrow\text{ }B< 0\)
* Với y > 15 => \(\frac{27}{y-15}>0\text{ }\Rightarrow\text{ }B>0\)
Mà ta đang tìm GT nguyên NN của \(\frac{27}{y-15}\) \(\Rightarrow\) y - 15 đạt GTLN và y < 15 , x nguyên => y = 14
=> GTNN của \(\frac{27}{y-15}=\frac{27}{-1}=-27\)
\(\Rightarrow\)GT nguyên NN của B = - 1 + ( - 27 ) = - 28 khi x = - 14
Ta đặt
\(A=\frac{42-x}{x-15}=-1+\frac{27}{x-15}\)
Để cho A nguyên thì (x - 15) phải là ước nguyên của 27
Để cho A có giá trị nhỏ nhất thì (x - 15) phải là số âm lớn nhất
Từ 2 cái này ta suy ra (x - 15) phải là ước nguyên âm lớn nhất của 27
\(\Rightarrow x-15=-1\)
\(\Rightarrow x=14\)
\(\Rightarrow A=-1+\frac{27}{-1}=-28\)
Phần lý luận bị lỗi 1 chỗ nhưng đáp án thì không đổi. Đọc nhầm thành A nguyên.
Sửa phần lý luận :
Để cho A nhỏ nhất thì (x - 15) phải là số nguyên âm lớn nhất:
Suy ra (x - 15) = - 1
<=> x = 14
=> A = - 28