Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-6x+11\)
\(=x^2-2x.3+3^2+2\)
\(=\left(x-3\right)^2+2\)
\(\Rightarrow A\ge2\)
\(\Rightarrow MinA=2\)
\(Khi\)\(\left(x-3\right)^2=0\Rightarrow x-3=0\Rightarrow x=3\)
Chúc bn học giỏi nhoa!!!
1+6x-x2=-x2+6x-9+10=-(x2-2*x*3+3^2)+10=-(x-3)2+10
Ta có: -(x-3)2<=0(với mọi x)
=>-(x-3)2+10<=10(với mọi x)
hay 1+6x-x2<=10(________)
Do đó, GTLN của 1+6x-x2 là 10 khi:
x-3=0
x=0+3
x=3
Vậy GTLN của 1+6x-x2 là 10 khi x=3
Ta có: 1 + 6x - x2 = -x2 + 6x + 1 = -(x2 - 6x - 1) = -(x2 - 2 . 3x + 32 - 10) = -[ (x - 3)2 - 10 ] = -(x - 3)2 + 10 \(\le\)10
=> Giá trị lớn nhất của 1 + 6x - x2 là 10 khi -(x - 3)2 = 0 => x = 3
Vậy x = 3 để 1 + 6x - x2 đạt giá trị lớn nhất là 10
1. Câu hỏi của Quỳnh Như - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo câu 1 tại link này.
\(A=x-x^2=-x^2+x=-\left(x^2-x\right)=-\left(x^2-x+1-1\right)\)
\(=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}-1\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}-1\right]=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)
\(=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{1}{4}\)
Dấu "=" xảy ra <=> \(\left(x-\frac{1}{2}\right)^2=0< =>x=\frac{1}{2}\)
Vậy MaxA=1/4 khi x=1/2
\(B=-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-2.x.3+9+2\right)=-\left[\left(x-3\right)^2+2\right]=-2-\left(x-3\right)^2\le-2\)
Dấu "=" xảy ra <=> x-3=0<=>x=3
Vậy maxB=-2 khi x=3
2.) A=x2-6x+15=(x-3)2+6
Vì (x-3)2>=0 với mọi x
=> (x-s)2+6>=6 với mọi x
hay A>=6 với mọi x
Dấu = xảy ra <=> x-3=0 <=> x=3
Vậy....
B=x2+4y2-4x+4y+15 = (x2-4x+4)+(4y2+4y+1)+10= (x-2)2+(2y+1)2+10
vì (x-2)2 >= 0 với mọi x ; (2y+1)2>=0 với mọi y
6>0
=> (x-2)2+(2y+1)2 + 6>=6 với mọi x;y
hay B>=6 với mọi x;y
Dấu = xảy ra <=> x-2=0 và 2y+1=0
<=> x=2 và y=-1/2
Vậy....
3) A= -x2+4x+3= -(x2-4x+4)+7 = -(x-2)2+7
vì -(x-2)2<=0 với mọi x
=> -(x-2)2+7<=7 với mọi x
hay A<=7 với mọi x
Dấu = xảy ra <=> x-2=0 <=> x=2
Vậy....
B=-x2-9y2+2x-6y+5= -(x2-2x+1)-(9y2+6y+1)+7 = -(x-1)2-(3y+1)2+7
vì -(x-1)2<=0 với mọi x
-(3y+1)2<=0 với mọi y
suy ra: -(x-1)2-(3y+1)2<=0 với mọi x;y
=> -(x-1)2-(3y+1)2+7<=7 với mọi x;y
hay A<=7 với mọi x, y
Dấu = xảy ra <=> x-1=0 và 3y+1=0
<=> x=1 và y=-1/3
vậy...
a)\(A=x^2+6x+15\)
\(A=x^2+6x+3^2-3^2+15\)
\(A=\left(x+3\right)^2+6\)
Vì \(\left(x+3\right)^2\ge0\) với mọi x nên (x+3)2+6>0 với mọi x
b) A có giá trị nhỏ nhất
A=(x+3)2+6
=> Amin=6<=>(x+3)2=0<=>x=-3
Vậy: Gtnn của A là 6 khi x= -3
Bài 1 : A=\(-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}\right)\)
A=\(-\left(x-\frac{1}{2}\right)^2-\frac{1}{4}< \)hoặc bằng -1/4 Vậy A max =1/4 khi x=1/2
a) \(F=x^2-8x+28=x^2-8x+16+12\)\(12\)\(=\left(x-4\right)^2+12\)
Vì \(\left(x-4\right)^2\ge0\forall x\)nên F \(\ge\)12
Vậy giá trị nhỏ nhất của F là 12 khi x-4=0 hay x=4
b) \(E=6x-x^2+1=-\left(x^2-6x-1\right)\)\(=-\left(x^2-6x+9-10\right)\)\(=10-\left(x-3\right)^2\)
Vì \(-\left(x-3\right)^2\le0\forall x\)nên E \(\le\)10
Vậy giá trị lớn nhất của E là 10 khi x-3=0 hay x=3
a, F = x2 - 8x + 28
= x2 - 2.x.4 + 42 +12
= (x - 4)2 + 12 >= 12
=>MinF = 12 <=> x = 4
b,E = 6x - x2 + 1
= -( x2 - 6x - 1)
= -( x2 - 2.x.3 + 32 - 8)
= -[(x - 3)2 -8]
= -(x - 3)2 + 8 <= 8
=>MaxE = 8 <=> x = 3
A=6x-x2+2=-(x2-6x+9)+11= -(x-3)2+11
= 11-(x-3)2 \(\le\)11
=> A max =11 khi (x-3)2=0 => x=3
Vậy gtln A=11 khi x=3