Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(y=2sin^4x+\left(1-2sin^2x\right)^2\)=\(2sin^4x+4sin^4x-4sinx^2+1=6sin^4x-4sin^2x+1\)
đặt \(t=sin^2x,0\le t\le1\)
ta đc \(y=6t^2-4t+1\)
ta tính y'=12t-4
giải pt y'=0 suy ra t=1/3
ta có bảng biến thiên
x y' y 0 1/3 1 0 - + 1 3 1/3
từ bảng bt ta suy ra hàm số đạt giá trị nhỏ nhất \(y=\frac{1}{3}\) khi \(t=\frac{1}{3}\Rightarrow sin^2x=\frac{1}{3}\)
hàm số đạt giá trị lớn nhất y=3 khi \(t=1\Rightarrow sin^2x=1\)
ta tính \(y'=\frac{x\left(x-2\right)}{\left(x-1\right)^2}\)
giải pt y'=0
ta có \(x\left(x-2\right)=0\) suy ra x=0 hoặc x=2
bảng bt
x y' y -2 0 1/2 2 0 0 + - -7/3 -1 -3/2
hàm số đạt giá trị lớn nhất =-1 tại x=0, đạt giá trị nhỏ nhất =-7/3 tại x=-2
ta tính
\(y'=3x^2-6x=3x\left(x-2\right)\)
giải pt y'= 0 ta có \(3x\left(x-2\right)=0\) suy ra x=0 hoặc x=2
x y' -3 0 1 2 0 0 y + -55 -1 -3 - -
nhìn vào bảng bt ta có giái trị lớn nhất của hàm số =3 khi x=0, hàm số đạt giá trị nhỏ nhất =-55 khi x=-3
hàm số đạt giái trị lớn nhất =-1 khi x=0, nhỏ nhất =-55 khi x=-3
Đáp án A.
Điều kiện x ∈ ℝ
y = cos x + cos x − π 3 = cos x + cos x . cos π 3 + sin x . sin π 3 = cos x + 1 2 cos x + 3 2 sin x
= 3 2 cos x + 3 2 sin x
Cách 1: y = 3 3 2 cos x + 1 2 sin x = 3 sin x + π 3 Suy ra − 3 ≤ y ≤ 3
Vậy m = − 3 ; M = 3 và do đó M 2 + m 2 = 6
Cách 2:
Áp dụng bất đẳng thức Bunyakovsky ta có:
3 2 cos x + 3 2 sin x 2 ≤ 3 2 2 + 3 2 2 cos x 2 + sin x 2
⇔ 3 2 cos x + 3 2 sin x 2 ≤ 3 ⇔ − 3 ≤ y ≤ 3
⇒ M = 3 khi 2 3 cos x = 2 3 sin x 3 2 cos x + 3 2 sin x = 3
Tương tự ta có m = − 3 khi 2 3 cos x = 2 3 sin x 3 2 cos x + 3 2 sin x = − 3
⇒ M 2 + m 2 = 3 2 + − 3 2 = 6
Vậy ta chọn A.
Đáp án D
Khi đó em tính được: f(1) = 2; f(-1) = 0. Vậy giá trị lớn nhất của hàm số là 2.
Chọn B
Vì sinx-cosx+3>0 nên tập giá trị của hàm số là tập hợp các giá trị của y để phương trình (1-y)sinx+(y+1)cosx=(1+3y) có nghiệm.
Sử dụng điều kiện có nghiệm của phương trình A.sinx+B.cosx=C. Vậy m = -1 và M=1/7
ta có \(y=cosx+2cos^2x-1\)
đặt \(t=cosx\) , \(\left|t\right|\le1\)
ta được \(y=2t^2+t-1\)
\(y'=4t+1\) ta giải phương trình y'=0 suy ra t=-1/4
ta có bbt
x y' y -1 -1/4 1 0 - + 0 2 -9/8
hàm số đạt giá trị lớn nhất =2 khi t =1 hay cosx=1
hàm số đạt giá trị nhỏ nhất =-9/8 khi t=-1/4 hay cosx=-1/4