Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)
Dấu "=" xảy ra khi x=y=1
Máy mình bị lỗi nên ko nhìn được các bài tiếp theo
Chúc bạn học tốt :)
Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2
Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0
Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi
a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)
Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)
\(\Leftrightarrow A\ge-1\)
Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1
Vậy Giá trị nhỏ nhất của A là -1
b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1
Ta có : \(\left|x-5\right|\ge0\forall x\)
=> \(-\left|x-5\right|\le0\forall x\)
Nên : \(A=\frac{4}{9}-\left|x-5\right|\le\frac{4}{9}\forall x\)
Vạy \(A_{max}=\frac{4}{9}\) khi x = 5
b) Ta có : \(\left(x-2\right)^2\ge0\forall x\)
=> \(\left(x-2\right)^2+3\ge3\forall x\)
Nên : \(B=\frac{1}{\left(x-2\right)^2+3}\le\frac{1}{3}\forall x\)
Vậy \(B_{max}=\frac{1}{3}\) khi x = 2
phần A, B bạn làm như bạn nguyễn quang trung còn C,D làm theo mình:
\(C=\frac{2017}{2018}-\left|x-\frac{3}{5}\right|\)
vì \(\left|x-\frac{3}{5}\right|\ge0\forall x\)
nên \(\frac{2017}{2018}-\left|x-\frac{3}{5}\right|\le\frac{2017}{2018}\forall x\)
vậy \(MaxC=\frac{2017}{2018}\Leftrightarrow x=\frac{3}{5}\)
\(D=\left|x-2\right|+\left|y+1\right|+3\)
\(\left|x-2\right|\ge0;\left|y+1\right|\ge0\forall x\)
nên \(\left|x-2\right|+\left|y+1\right|+3\ge3\forall x\)
vậy \(MinA=3\Leftrightarrow x=2;y=-1\)
a ) Ta có : A = \(\left|x+\frac{1}{2}\right|\ge0\forall x\)
Vậy Amin = 0 , khi x = \(-\frac{1}{2}\)
b) \(B=\left|\frac{3}{7}-x\right|+\frac{1}{9}\)
Mà : \(\left|\frac{3}{7}-x\right|\ge0\forall x\)
Nên : \(B=\left|\frac{3}{7}-x\right|+\frac{1}{9}\ge\frac{1}{9}\forall x\)
Vậy Bmin = \(\frac{1}{9}\) kh x = \(\frac{3}{7}\)
a, Để A lớn nhất thì mẫu 3|x-1|+1 nhỏ nhất và lớn hơn 0.Mà |x-1|>=0 => 3|x-1|>=0 => 3|x-1| +1>=1 Suy ra A >=1 Dấu ''='' sảy ra khi 3|x-1|=0 Suy ra x-1=0 =>x=1
b, Để B nhận giá trị lớn nhất thì -4-2|x-1| nhỏ nhất lớn hơn 0 .Mà -2|x-1|<=0 Nếu -2|x-1|=0 thì mẫu -4 -2 Suy ra để -4-2|x-1| nhỏ nhất lớn hơn 0 thì -2|x-1| lớn nhất và nhỏ hơn 0 =>-2|x-1|=-1 =>|x-1|=1/2 => x-1=1/2 hoặc x-1=-1/2 +TH1:x-1=1/2 =>x=1/2+1=3/2 +TH2:x-1=-1/2 =>x=-1/2+1=1/2 thay x=3/2 và x=1/2 vào B ta đều tìm được B=5/2