Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với các số thực không âm a; b ta luôn có BĐT sau:
\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) (bình phương 2 vế được \(2\sqrt{ab}\ge0\) luôn đúng)
Áp dụng:
a.
\(A\ge\sqrt{x-4+5-x}=1\)
\(\Rightarrow A_{min}=1\) khi \(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
\(A\le\sqrt{\left(1+1\right)\left(x-4+5-x\right)}=\sqrt{2}\) (Bunhiacopxki)
\(A_{max}=\sqrt{2}\) khi \(x-4=5-x\Leftrightarrow x=\dfrac{9}{2}\)
b.
\(B\ge\sqrt{3-2x+3x+4}=\sqrt{x+7}=\sqrt{\dfrac{1}{3}\left(3x+4\right)+\dfrac{17}{3}}\ge\sqrt{\dfrac{17}{3}}=\dfrac{\sqrt{51}}{3}\)
\(B_{min}=\dfrac{\sqrt{51}}{3}\) khi \(x=-\dfrac{4}{3}\)
\(B=\sqrt{3-2x}+\sqrt{\dfrac{3}{2}}.\sqrt{2x+\dfrac{8}{3}}\le\sqrt{\left(1+\dfrac{3}{2}\right)\left(3-2x+2x+\dfrac{8}{3}\right)}=\dfrac{\sqrt{510}}{6}\)
\(B_{max}=\dfrac{\sqrt{510}}{6}\) khi \(x=\dfrac{11}{30}\)
a)Ta có:A=\(\sqrt{x-4}+\sqrt{5-x}\)
=>A2=\(x-4+2\sqrt{\left(x-4\right)\left(5-x\right)}+5-x\)
=>A2= 1+\(2\sqrt{\left(x-4\right)\left(5-x\right)}\ge1\)
=>A\(\ge\)1
Dấu '=' xảy ra <=> x=4 hoặc x=5
Vậy,Min A=1 <=>x=4 hoặc x=5
Còn câu b tương tự nhé
ĐK: \(x\ge0\)
+) Với x = 0 => A = 0
+) Với x khác 0
Ta có: \(\frac{1}{A}=\frac{3}{4}\sqrt{x}-\frac{3}{4}+\frac{3}{4\sqrt{x}}=\frac{3}{4}\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)-\frac{3}{4}\ge\frac{3}{4}.2-\frac{3}{4}=\frac{3}{4}\)
=> \(A\le\frac{4}{3}\)
Dấu "=" xảy ra <=> \(\sqrt{x}=\frac{1}{\sqrt{x}}\)<=> x = 1
Vậy max A = 4/3 tại x = 1
Còn có 1 cách em quy đồng hai vế giải đenta theo A thì sẽ tìm đc cả GTNN và GTLN
\(A=\frac{4\sqrt{x}}{3x-\sqrt{x}+3}\left(đk:x\ge0\right)\Rightarrow3Ax-A\sqrt{x}+3A=4\sqrt{x}\Leftrightarrow3Ax-\left(A+4\right)\sqrt{x}+3A=0\)\(\left(1\right)\)
- \(Xét:A=0\Rightarrow x=0\)
- \(Xét:A\ne0,coi\left(1\right)là\)\(ptb2\) \(ẩn\sqrt{x}\)
- \(Để\left(1\right)có\)\(nghiệm,thì:\)\(\frac{A+4}{3A}\ge0\Rightarrow A\ge0\)hoặc\(A\le-4\)
- Và đenta\(=\left(A+4\right)^2-36A^2=-35A^2+8A+16\ge0\)
- \(\Leftrightarrow\frac{-16}{35}\le A\le\frac{32}{35}\)\(\Rightarrow0\le A\le\frac{32}{35}\)
- \(\Rightarrow MinA=0\Leftrightarrow x=0\)
- \(MaxA=\frac{32}{35}\Leftrightarrow x=\left(\frac{3+\sqrt{265}}{16}\right)^2\)hoặc\(x=\left(\frac{3-\sqrt{265}}{16}\right)^2\)
Bài 5
\(a - b = 2 <=> b = a - 2\)
Do đó: \(P = 3a^2 + (a-2)^2 + 8\)
\(= 3a^2 + a^2 - 4a + 4 + 8\)
\(= 4a^2 - 4a + 12\)
\(= (2a - 1)^2 + 11\)
Vì \((2a - 1)^2 \geq 0 \) với mọi a nên \(= (2a - 1)^2 + 11 \geq 11 \) hay \(P \geq 11\)
Dấu "=" xảy ra \(\begin{cases} a - b = 2 \\ 2a - 1 = 0 \\\end{cases} <=> \begin{cases} a = \dfrac{1}{2} \\ b = -\dfrac{3}{2} \\\end{cases}\)
Vậy giá trị nhỏ nhất của P là 11 tại \(\begin{cases} a = \dfrac{1}{2} \\ b = -\dfrac{3}{2} \\\end{cases}\)
câu hình:
a) Vì AB là đường kính \(\Rightarrow\angle ADB=90\Rightarrow\angle EDB+\angle EHB=180\)
\(\Rightarrow EDHB\) nội tiếp
b) Xét \(\Delta AHE\) và \(\Delta ADB:\) Ta có: \(\left\{{}\begin{matrix}\angle DABchung\\\angle AHE=\angle ADB=90\end{matrix}\right.\)
\(\Rightarrow\Delta AHE\sim\Delta ADB\left(g-g\right)\Rightarrow\dfrac{AH}{AD}=\dfrac{AE}{AB}\Rightarrow AB.AH=AD.AE\)
mà \(AH.AB=AC^2\) (hệ thức lượng) \(\Rightarrow AC^2=AD.AE\)
c) Vì \(EF\parallel AB\) \(\Rightarrow\angle CFE=\angle CBA=\angle CDA=\angle CDE\)
\(\Rightarrow CDFE\) nội tiếp mà \(\angle CEF=90\) \((EF\parallel AB,AB\bot CH)\)
\(\Rightarrow\angle CDF=90\Rightarrow CD\bot DF\)
Vì \(\Delta CDF\) vuông tại D có K là trung điểm CF \(\Rightarrow KC=KD\)
\(\Rightarrow\Delta KCD\) cân tại K \(\Rightarrow\angle DKB=2\angle DCB=2\angle DAB=\angle DOB\)
\(\Rightarrow DKOB\) nội tiếp \(\Rightarrow K\in\left(OBD\right)\)
Đk: \(x\ge0\)
\(P=\dfrac{\sqrt{x}}{x+3\sqrt{x}+4}\)
\(\Leftrightarrow x.P+\sqrt{x}\left(3P-1\right)+4P=0\) (1)
Xét P=0 <=> x=0(tm)
Xét \(P\ne0\) .Coi pt (1) là phương trình ẩn \(\sqrt{x}\)
Phương trình (1) có nghiệm không âm khi \(\Leftrightarrow\left\{{}\begin{matrix}\Delta\ge0\\S\ge0\\P\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-7P^2-6P+1\ge0\\\dfrac{1-3P}{P}\ge0\\4\ge0\left(lđ\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1\le P\le\dfrac{1}{7}\\0< P\le\dfrac{1}{3}\end{matrix}\right.\) \(\Rightarrow0< P\le\dfrac{1}{7}\)
Kết hợp với P=0 \(\Rightarrow0\le P\le\dfrac{1}{7}\)
Có \(\dfrac{1}{7}>0\) => maxP=\(\dfrac{1}{7}\). Thay \(P=\dfrac{1}{7}\) vào (1) tìm được x=4 (tm)
minP=0 <=> x=0
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
bài 9 mà bạn làm bài nào thế