K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2017

\(x^2+2xy+4x+4y+3y^2+3=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(4x+4y\right)+4+2y^2-1=0\)

\(\Leftrightarrow\left(x+y\right)^2+4\left(x+y\right)+4=1-2y^2\)

\(\Leftrightarrow\left(x+y+2\right)^2=1-2y^2\)

Do  \(VP=1-2y^2\le1\forall y\) nên \(VT=\left(x+y+2\right)^2\le1\)

\(\Leftrightarrow-1\le x+y+2\le1\)

\(\Leftrightarrow-1+2015\le x+y+2+2015\le1+2015\)

\(\Leftrightarrow2014\le x+y+2017\le2016\)

Hay \(2014\le B\le2016\)

24 tháng 12 2017

Bạn Đinh Đức Hùng cho tớ hỏi được không ạ ?

Cái chỗ do Vp = 1- 2y^2 nên ...

Bên trên là dương 1 sao ở đưới lại là -1 ạ? Tớ chưa hiểu chỗ này, mong cậu giảng cho tớ :< pls !

24 tháng 6 2018

1) \(A=\frac{2x+1}{x^2+2}\)

\(=\frac{\frac{1}{2}\left(x^2+4x+4\right)-\frac{1}{2}\left(x^2+2\right)}{x^2+2}\)

\(=\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}-\frac{1}{2}\ge-\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy GTNN của \(A=-\frac{1}{2}\)khi x = -2 

5 tháng 12 2017

\(Q=\left(x-1\right)^2-2\left(x+3\right)^2=x^2-2x+1-2x^2-12x-18=-x^2-14x-17\)

\(Q=32-\left(x^2+14x+49\right)=32-\left(x+7\right)^2\)

Ta thấy (x+7)2 luôn lớn hơn hoặc bằng 0 nhỏ nhất là =0

Mà Q lớn nhất khi (x+7)2 nhỏ nhất

Vậy Q lớn nhất = 32-0 = 32 khi và chỉ khi (x+7)2 = 0 => x = -7

5 tháng 7 2016

1/B=\(-\left(x^2+2y^2+2xy-2y\right)\)

     =\(-\left(x^2+2xy+y^2+y^2-2y+1-1\right)\)

     =\(-\left[\left(x+y\right)^2+\left(y-1\right)^2\right]+1\)<=1

Bmax=1 khi x+y=0 và y-1=0=>x=-1;y=1

2/C=\(x^2+x+\frac{1}{4}+y^2+y+\frac{1}{4}+\frac{1}{2}\)

      =\(\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{1}{2}\)>=\(\frac{1}{2}\)

Cmin=\(\frac{1}{2}\)khi \(x+\frac{1}{2}=0\)và \(y+\frac{1}{2}=0\)=>\(x=y=\frac{-1}{2}\)

2 tháng 12 2017

Giải:

Đặt \(A=x+y+2017\) Ta có: \(x^2+2xy+6x+6y+2y^2+8=0\)

\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+y^2=-8\)

Mà \(y^2\ge0\Rightarrow\left(x+y\right)^2+6\left(x+y\right)\le-8\)

\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9\le1\) \(\Leftrightarrow\left(x+y+3\right)^2\le1\)

\(\Rightarrow\left|x+y+3\right|\le1\Rightarrow-1\le x+y+3\le1\)

\(\Leftrightarrow2013\le A\le2015\) Dấu "=" xảy ra:

\(A_{MIN}\Leftrightarrow\hept{\begin{cases}x+y+2017=2013\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-4\\y=0\end{cases}}\)

\(A_{MAX}\Leftrightarrow\hept{\begin{cases}x+y+2017=2015\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=0\end{cases}}\)