K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2018

Đáp án C.

y ' = 1 − 2 e 2 x

y ' = 0 ⇔ 1 − 2 e 2 x = 0 ⇔ e 2 x = 1 2 ⇔ 2 x = − ln 2 ⇔ x = − ln 2 2 ∈ − 1 ; 1

y − 1 = − 1 − e − 2 ; y 1 = 1 − e 2 ; y − ln 2 2 = − ln 2 2 − 1 2 = − ln 2 + 1 2

Suy ra  max − 1 ; 1 y = − ln 2 + 1 2

16 tháng 2 2018

Đáp án D

7 tháng 7 2018

Đáp án D

Ta có  m a x [ 1 ; 2 ]   y + m i n [ 1 ; 2 ]   y = y ( 1 ) + y 2 = m + 1 2 + m + 2 3 = 16 3 ⇒ 5 m + 7 6 = 16 3

⇔ 5 m + 7 = 32 ⇒ m = 5

13 tháng 1 2017

Đáp án A

18 tháng 1 2018

Chọn C.

Dựa vào đồ thị hàm số f ' ( x )  suy ra BBT của hàm số y = f(x)

 

Khẳng định 1, 2, 5 đúng, khẳng định 4 sai.

Xét khẳng định 3: Ta có:

f ( 3 ) + f ( 2 ) = f ( 0 ) + f ( 1 ) ⇒ f ( 3 ) - f ( 0 ) = f ( 1 ) - f ( 2 ) > 0  

Do đó f ( 3 ) > f ( 0 ) ⇒  Vậy khẳng định 3 đúng.

11 tháng 10 2017

Chọn B

19 tháng 5 2017

8 tháng 12 2018

31 tháng 7 2017

Đáp án C

Lời giải trên là sai. Cách làm lời giải này chỉ đúng đối với bài toán tìm giá trị lớn nhất – giá trị nhỏ nhất của hàm số trên một đoạn .

Để giải bài toán này, ta lập bảng biến thiên của hàm số y = 2 x 4 − 4 x 2 + 3  trên R

* Bước 1: Tập xác định D = ℝ . Đạo hàm  y ' = 8 x 3 − 8 x   .

* Bước 2: Cho   y ' = 0 tìm x = 0 ; x = − 1 ; x = 1 .

* Bước 3: Ta có bảng biến thiên sau:

Quan sát bảng biến thiên, ta thấy giá trị nhỏ nhất của hàm số là 1 và hàm số không có giá trị lớn nhất. Vậy lời giải trên sai từ bước 3.

1 tháng 10 2018

28 tháng 1 2019

Đáp án C

Lưu ý: Đề không cho tìm max – min trên đoạn nên ta không thể so sánh các giá trị như vậy

Cách giải: Lập BBT và ở đây kết luận được giá trị nhỏ nhất của hàm số là 1 , nhưng hàm số không có giá trị lớn nhất.