Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
B = 4 – 16 x 2 – 8 x = 5 – ( 16 x 2 + 8 x + 1 ) = 5 – [ ( 4 x ) 2 + 2 . 4 x . 1 + 1 2 ] = 5 – ( 4 x + 1 ) 2
Nhận thấy 4 x + 1 2 ≥ 0; Ɐx
=> 5 – 4 x + 1 2 ≤ 5
Dấu “=” xảy ra khi 4 x + 1 2 = 0 ó x = - 1 4
Đáp án cần chọn là: A
\(A=5-8x+x^2=-8x+x^2+6-11\)
\(=\left(x-4\right)^2-11\)
Vì \(\left(x-4\right)^2\ge0\forall x\)\(\Rightarrow\left(x-4\right)^2-11\ge-11\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)
Vậy Amin = - 11 <=> x = 4
\(B=\left(2-x\right)\left(x+4\right)=-x^2-2x+8\)
\(=-\left(x^2+2x+1\right)+9=-\left(x+1\right)^2+9\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+1\right)^2+9\le9\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy Bmax = 9 <=> x = - 1
\(C=16x^2-8x+2024\)
\(\Rightarrow C=16x^2-8x+1+2023\)
\(\Rightarrow C=\left(4x-1\right)^2+2023\ge2023\left(\left(4x-1\right)^2\ge0\right)\)
\(\Rightarrow Min\left(C\right)=2023\)
\(D=-25x^2+50x-2023\)
\(\Rightarrow D=-\left(25x^2-50x+25\right)-1998\)
\(\Rightarrow D=-\left(5x-5\right)^2-1998\le1998\left(-\left(5x-5\right)^2\le0\right)\)
\(\Rightarrow Max\left(D\right)=1998\)
\(B=-x^2+20x+100=-\left(x^2-20x+100\right)+200=-\left(x-10\right)^2+200\le200\left(-\left(x-10\right)^2\le0\right)\)
\(\Rightarrow Max\left(B\right)=200\)
\(E=\left(2x-1\right)^2-\left(3x+2\right)\left(x-5\right)\)
\(\Rightarrow E=4x^2-4x+1-\left(3x^2-13x-10\right)\)
\(\Rightarrow E=4x^2-4x+1-3x^2+13x+10\)
\(\Rightarrow E=x^2+9x+11=x^2+9x+\dfrac{81}{4}-\dfrac{81}{4}+11\)
\(\Rightarrow E=\left(x+\dfrac{9}{2}\right)^2-\dfrac{37}{4}\ge-\dfrac{37}{4}\left(\left(x+\dfrac{9}{2}\right)^2\ge0\right)\)
\(\Rightarrow Min\left(E\right)=-\dfrac{37}{4}\)
\(F=\left(3x-5\right)^2-\left(3x+2\right)\left(4x-1\right)\)
\(\Rightarrow F=9x^2-30x+25-\left(12x^2+3x-2\right)\)
\(\Rightarrow F=-3x^2-33x+27=-3\left(x^2-10x+9\right)\)
\(\Rightarrow F=-3\left(x^2-10x+25\right)+48=-3\left(x-5\right)^2+48\le48\left(-3\left(x-5\right)^2\le0\right)\)
\(\Rightarrow Max\left(F\right)=48\)
Câu 21: So sánh M = 232 và N = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
A. M > N B. M < N C. M = N D. M = N – 1
Câu 22: Tìm giá trị lớn nhất của biểu thức B = 4 – 16x2 – 8x
A. 5 B. -5 C. 8 D.-8
Câu 23: Biểu thức E = x2 – 20x +101 đạt giá trị nhỏ nhất khi
A. x = 9 B. x = 10 C. x = 11 D.x = 12
Câu 24: Kết quả của phép chia 15x3y4 : 5x2y2 là
A. 3xy2 B. -3x2y C. 5xy D. 15xy2
Câu 25: Kết quả của phép chia (6xy2 + 4x2y – 2x3) : 2x là
A. 3y2 + 2xy – x2 B. 3y2 + 2xy + x2 C. 3y2 – 2xy – x2 D. 3y2 + 2xy
Ta có
Q = 8 – 8 x – x 2 = - x 2 – 8 x – 16 + 16 + 8 = - ( x + 4 ) 2 + 24 = 24 – ( x + 4 ) 2
Nhận thấy ( x + 4 ) 2 ≥ 0 ; Ɐx
=> 24 – ( x + 4 ) 2 ≤ 24
Dấu “=” xẩy ra khi ( x + 4 ) 2 = 0 ó x = -4
Giá trị lớn nhất của Q là 24 khi x = -4
Đáp án cần chọn là: D
Ta co : 8x+12/x^2+4
Xet tu , ta co :
8x+12
=x^4+8x+16-x^4-4
=(x^2+4)^2-(x^4+4)
Thay vao bieu thuc tren ta co :
[(x^2+4)^2-(x^4+4)]/(x^2+4)
=(x^2+4)^2/(x^2+4)-(x^4+4)/(x^2+4)
=1-(x^4+4)/(x^2+4)
Ma : -(x^4+4)/(x^2+4) < 0
=> 1-(x^4+4)/(x^2+4) < 1
Hay : Max cua bieu thuc la 1
Nhớ cho 5 sao luôn nhé
Ta có: \(4x^2-8x+7=4x^2-8x+4+3\left(2x-2\right)^2+3\ge3\)
\(\Rightarrow B>0\)
Vậy B có GTLN \(\Leftrightarrow\left(2x-2\right)^2+3\)có GTNN
Mà \(\left(2x-2\right)^2+3\ge3\Rightarrow Min\left(4x^2=8x+7\right)=3\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
\(\Rightarrow\)Max B = 3\(\Leftrightarrow x=1\)
Ta có: x^2>=0 với mọi x =>-x^2<=0 với mọi x =>-x^2-8*5<=-40
Dấu bằng xảy ra khi x^2=0 =>x=0
4-8x-16x2= -16x2-8x -1 +5= -(16x2+8x+1)+5= -(4x+1)2+5 \(\le\)0+5=5
Dấu bằng xảy ra khi 4x-1 =0 tương đương với x=\(\frac{1}{4}\)
Vậy giá trị lớn nhất của bt là 5 khi và chỉ khi x = \(\frac{1}{4}\)