Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk sửa lại đề nha tìm GTNN
a) B=|x- 2006| -|2007- x|
Vì |x- 2006|\(\ge\)0
|2007- x|\(\ge\)0
Suy ra:|x- 2006| -|2007- x|\(\ge\)0
Dấu = xảy ra khi x-2006=0;x=2006
2007-x=0;x=2007
Vậy Min B=0 khi x=2006
x=2007
Ta có :
\(\left(x^2-9\right)^2+\left|y-2\right|\ge0\forall x,y\)
\(\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|+10\ge10\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x^2-9\right)^2=0\\\left|y-2\right|=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=\pm3\\y=2\end{cases}}\)
Vậy : min \(\left(x^2-9\right)^2+\left|y-2\right|+10=10\) tại \(\hept{\begin{cases}x=\pm3\\y=2\end{cases}}\)
a)|x- 2006| -|2007- x|
Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-2006\right|-\left|2007-x\right|\ge\left|x-2006-2007-x\right|=4013\)
Dấu = khi \(\left(x-2006\right)\left(2007-x\right)\ge0\)
\(\Rightarrow2006\le x\le2007\)
\(\Rightarrow\begin{cases}2006\le x\le2007\\\left(x-2006\right)\left(2007-x\right)=0\end{cases}\)\(\Rightarrow\begin{cases}x=2006\\x=2007\end{cases}\)
Vậy MinB=4013 khi x=2006 hoặc x=2007
b)Ta có:\(\begin{cases}y^2\\\left|x-16\right|\end{cases}\ge0\)
\(\Rightarrow y^2+\left|x-16\right|-9\ge0-9=-9\)
\(\Rightarrow C\ge-9\)
Dấu = khi \(\begin{cases}y^2=0\\\left|x-16\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x=16\\y=0\end{cases}\)
Vậy MinC=-9 khi x=16 và y=0
\(Q=x^2+2y^2+2xy-2x-6y+2015\)
\(Q=x^2+2x\left(y-1\right)+2y^2-6y+2015\)
\(Q=x^2+2x\left(y-1\right)+y^2-2y+1+y^2-4y+4+2010\)
\(Q=x^2+2x\left(y-1\right)+\left(y-1\right)^2+\left(y-2\right)^2+2010\)
\(Q=\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\forall x;y\)
Dấu "=" xảy ra khi x=-3;y=4
5-/3x-4/
ta có: /3x-4/\(\ge0,\forall x\)
\(\Rightarrow\)5-/3x-4/\(\le5\)
Dấu "=" xảy ra khi 3x-4=0 =>3x=4 =>\(x=\frac{3}{4}\)
Vậy GTNL của 5-/3x-4/ là 5 với x=\(\frac{3}{4}\)
\(\left(4x-6\right)^{2008}+8\)
ta có: \(\left(4x-6\right)^{2008}\ge0,\forall x\)
\(\Rightarrow\left(4x-6\right)^{2008}+8\ge8\)
dấu "=" xảy ra khi (4x-6)2008=0
=> 4x-6=0 =>4x=6 =>x=\(\frac{3}{2}\)
vậy GTNN của (4x-6)2008 là 8 với x=\(\frac{3}{2}\)
giá trị tuyệt đối x+10 lớn hơn hoăc bằng 0
=> giá trị tuyệt đối x+10 cộng với 2005
sẽ lớn hơn hoăc bằng 2005 => A lớn hơn hoăc bằng 2005
Dấu bằng xảy ra <=> giá trị tuyệt đối x+10 bằng 0
=> x=-10
Vậy Min B = 2005 <=> x=-10
\(A=x^2+2y^2+2xy-4x+6y+2020\)
\(A=\left(x^2+y^2+2^2+2xy-4y-4x\right)+\left(y^2+10y+25\right)+1991\)
\(A=\left(x+y-2\right)^2+\left(y+5\right)^2+1991\ge1991\)
Vậy \(Min_A=1991\)khi \(\hept{\begin{cases}x+y-2=0\\y+5=0\end{cases}}\hept{\begin{cases}x+y=2\\y=-5\end{cases}}\hept{\begin{cases}x=7\\y=-5\end{cases}}\)
A = (x^2 - 9)^2 + |y - 2| + 10
có (x^2 - 9)^2 > 0; |y - 2| > 0
=> (x^2 - 9)^2 + |y - 2| > 0
=> (x^2 - 9)^3 + |y - 2| + 10 > 10
=> A > 10
=> Min A = 10
dấu = xảy ra khi :
(x^2 - 9)^2 = 0 và |y - 2| = 0
=> x^2 - 9 = 0 và y - 2 = 0
=> x^2 = 9 và y = 2
=> x = + 3 và y = 2
nhận thấy : (x^2-9)^2 >=0
|y-2|>=0
=> biểu thức (x^2-9)+|y-2|>=0
=>(x^2-9)+|y-2|+10>=10
=>GTNN của biểu thức là 10 khi
(x^2-9)^2=0<=>x^2-9=0<=>x=+-3
|y-2|=0 <=> y=2
Vậy giá trị nhỏ nhất của biểu thức là 10 khi x=3 ;y=2 và x=-3 và y=2